
Exported on Aug/03/2020 03:34 PM
https://docs.mellanox.com/x/5pXuAQ

NVIDIA® MLNX_OFED Documentation Rev

5.1-0.6.6.0
5.0-2.1.8.0.80

https://docs.mellanox.com/x/5pXuAQ

2

Table of Contents
Release Notes ..11

Supported NICs Speeds .. 11

Package Contents .. 12

General Support in MLNX_OFED.. 13

MLNX_OFED Supported Operating Systems .. 13

Supported Non-Linux Virtual Machines.. 16

Support in ASAP2™ .. 16

ASAP2 Supported Operating Systems.. 16

ASAP2 Requirements..17

ASAP2 Supported Adapter Cards ...17

NFS over RDMA (NFSoRDMA) Supported Operating Systems 17

Lustre Versions Supported by MLNX_OFED .. 17

NEO-Host Supported Operating Systems... 18

GPUDirect Storage (GDS) Supported Operating Systems.. 18

Hardware and Software Requirements... 18

Supported NICs Firmware Versions ... 19

MLNX_OFED Unsupported Functionalities/Features/NICs ... 19

Changes and New Features.. 20

MLNX_OFED New Features... 20

API Changes in MLNX_OFED... 23

MLNX_OFED Verbs API Migration .. 23

Known Issues .. 24

Bug Fixes ... 35

Introduction..52

Stack Architecture... 53

Mellanox OFED Package .. 55

Module Parameters .. 56

Device Capabilities .. 57

Installation ...58

Hardware and Software Requirements.. 58

Downloading Mellanox OFED ... 58

Installing Mellanox OFED ... 59

3

Installation Script ... 59

Installation Procedure ... 61

Installation Results .. 64

Installation Logging.. 64

Driver Load Upon System Boot ... 64

mlnxofedinstall Return Codes ... 65

Additional Installation Procedures.. 65

Installing MLNX_OFED on Innova™ IPsec Adapter Cards .. 65

Installing MLNX_OFED Using YUM .. 65

Installing MLNX_OFED Using apt-get.. 69

Installing NEO-Host Using mlnxofedinstall Script ... 71

Uninstalling Mellanox OFED... 71

Uninstalling Mellanox OFED Using the YUM Tool .. 71

Uninstalling Mellanox OFED Using the apt-get Tool.. 72

Updating Firmware After Installation... 72

Updating the Device Online.. 72

Updating the Device Manually ... 72

Updating the Device Firmware Automatically upon System Boot 73

Updating Firmware and FPGA Image on Innova IPsec Cards.. 73

UEFI Secure Boot .. 74

Enrolling Mellanox's x.509 Public Key On your Systems.. 74

Removing Signature from Kernel Modules... 75

Performance Tuning ... 75

Features Overview and Configuration..76

Ethernet Network.. 76

Ethernet Interface .. 76

Port Type Management/VPI Cards Configuration.. 76

Counters ..76

Persistent Naming ..77

Interrupt Request (IRQ) Naming...78

Quality of Service (QoS) .. 80

Mapping Traffic to Traffic Classes.. 80

Plain Ethernet Quality of Service Mapping... 80

RoCE Quality of Service Mapping ...81

4

Map Priorities with set_egress_map.. 81

Quality of Service Properties ..82

Quality of Service Tools...83

Packet Pacing..87

Ethtool... 89

Checksum Offload.. 93

Ignore Frame Check Sequence (FCS) Errors ... 93

RDMA over Converged Ethernet (RoCE) ... 94

RoCE Modes ..94

GID Table Population ..95

RoCE Lossless Ethernet Configuration..97

Installing and Loading the Driver ...97

Type Of Service (ToS)... 100

RoCE LAG .. 101

Disabling RoCE.. 101

Enabling/Disabling RoCE on VMs via VFs .. 102

Force DSCP ... 102

Force Time to Live (TTL) ... 103

Flow Control ... 103

Priority Flow Control (PFC)... 103

Dropless Receive Queue (RQ) ... 106

Explicit Congestion Notification (ECN) .. 107

Enabling ECN .. 107

RSS Support ... 108

RSS Hash Function ... 108

Time-Stamping... 109

Time-Stamping Service... 109

RoCE Time-Stamping.. 113

One Pulse Per Second (1PPS) .. 113

Flow Steering.. 113

Flow Steering Support .. 113

Flow Domains and Priorities .. 113

Ethtool.. 114

Accelerated Receive Flow Steering (aRFS).. 115

5

Flow Steering Dump Tool ... 116

Wake-on-LAN (WoL) .. 116

Hardware Accelerated 802.1ad VLAN (Q-in-Q Tunneling) ... 116

VLAN Stripping in Linux Verbs... 117

Dump Configuration... 117

Dump Parameters (Bitmap Flag) ... 117

Configuration... 117

Local Loopback Disable... 119

Kernel Transport Layer Security (kTLS) Offloads ... 119

Overview... 120

Establishing a kTLS Connection... 120

Kernel Support ... 120

Configuring kTLS Offloads .. 120

IPsec Crypto Offload... 121

Overview and Configuration .. 121

Configuring Security Associations for IPsec Offloads ... 121

InfiniBand Network ... 121

InfiniBand Interface.. 122

Port Type Management... 122

RDMA Counters... 122

OpenSM... 122

opensm .. 122

osmtest .. 123

Partitions ... 124

Effect of Topology Changes .. 127

Routing Algorithms ... 127

Unicast Routing Cache.. 144

Quality of Service Management in OpenSM ... 144

Adaptive Routing Manager and SHIELD... 155

Congestion Control Manager.. 155

DOS MAD Prevention .. 158

MAD Congestion Control .. 159

IB Router Support in OpenSM... 160

OpenSM Activity Report... 160

6

Offsweep Balancing... 161

QoS - Quality of Service.. 162

QoS Architecture ... 163

Supported Policy ... 163

CMA Features.. 164

IP over InfiniBand (IPoIB) ... 164

Upper Layer Protocol (ULP).. 164

Enhanced IPoIB .. 165

IPoIB Mode Setting.. 165

Port Configuration... 166

IPoIB Configuration ... 166

Sub-interfaces... 169

Verifying IPoIB Functionality... 170

Bonding IPoIB.. 170

Dynamic PKey Change .. 171

Precision Time Protocol (PTP) over IPoIB.. 171

One Pulse Per Second (1PPS) over IPoIB .. 172

Advanced Transport ... 172

Atomic Operations... 172

XRC - eXtended Reliable Connected Transport Service for InfiniBand 173

Dynamically Connected Transport (DCT) ... 173

MPI Tag Matching and Rendezvous Offloads... 174

Optimized Memory Access... 174

Memory Region Re-registration ... 174

Memory Window.. 175

User-Mode Memory Registration (UMR).. 176

On-Demand-Paging (ODP).. 176

Inline-Receive.. 177

Mellanox PeerDirect® ... 177

Mellanox PeerDirect Async... 177

Mellanox Relaxed Ordering (RSYNC).. 178

CPU Overhead Distribution.. 178

Out-of-Order (OOO) Data Placement... 178

Overview... 178

7

IB Router... 178

Storage Protocols.. 179

SRP - SCSI RDMA Protocol ... 180

SRP Initiator .. 180

Shutting Down SRP ... 188

iSCSI Extensions for RDMA (iSER) .. 188

iSER Initiator.. 189

iSER Targets .. 189

Lustre.. 190

NVME-oF - NVM Express over Fabrics ... 190

NVME-oF.. 190

NVME-oF Target Offload... 191

Virtualization.. 191

Single Root IO Virtualization (SR-IOV) ... 191

System Requirements... 191

Setting Up SR-IOV ... 192

Configuring SR-IOV (Ethernet).. 193

Configuring SR-IOV (InfiniBand) ... 193

Additional SR-IOV Configurations... 196

Uninstalling the SR-IOV Driver ... 204

SR-IOV Live Migration ... 205

Enabling Paravirtualization.. 222

VXLAN Hardware Stateless Offloads... 223

Enabling VXLAN Hardware Stateless Offloads .. 223

Important Notes .. 224

Q-in-Q Encapsulation per VF in Linux (VST).. 224

Setup.. 225

Prerequisites ... 225

Configuring Q-in-Q Encapsulation per Virtual Function for ConnectX-5/
ConnectX-6 .. 225

802.1Q Double-Tagging.. 226

Configuring 802.1Q Double-Tagging per Virtual Function 226

Resiliency... 227

Reset Flow .. 227

Kernel ULPs .. 228

8

User Space Applications (IB/RoCE) .. 228

SR-IOV.. 228

Forcing the VF to Reset... 228

Extended Error Handling (EEH) .. 228

CRDUMP.. 228

Firmware Tracer ... 229

Docker Containers .. 229

Docker Using SR-IOV ... 230

Kubernetes Using SR-IOV.. 230

Kubernetes with Shared HCA .. 230

Mediated Devices ... 230

Configuring Mediated Device.. 231

HPC-X™ ... 232

Fast Driver Unload .. 232

OVS Offload Using ASAP² Direct ... 232

Overview.. 232

Installing OVS-Kernel ASAP² Packages .. 232

Installing OVS-DPDK ASAP² Packages ... 232

Setting Up SR-IOV .. 233

OVS Hardware Offloads Configuration .. 234

OVS-Kernel Hardware Offloads.. 234

OVS-DPDK Hardware Offloads ... 244

VirtIO Acceleration through Hardware vDPA .. 249

Hardware vDPA Installation.. 249

Hardware vDPA Configuration.. 250

Running Hardware vDPA ... 251

Appendix: Mellanox Firmware Tools ... 252

Programming ...254

Raw Ethernet Programming... 254

Packet Pacing... 254

TCP Segmentation Offload (TSO)... 254

ToS Based Steering.. 254

Flow ID Based Steering.. 254

VXLAN Based Steering... 254

9

Device Memory Programming.. 255

Device Memory Programming Model.. 255

RDMA-CM QP Timeout Control .. 255

RDMA-CM Application Managed QP .. 255

InfiniBand Fabric Utilities ..256

Common Configuration, Interface and Addressing ... 256

Topology File (Optional).. 256

InfiniBand Interface Definition.. 256

Addressing... 256

Diagnostic Utilities .. 257

Link Level Retransmission (LLR) in FDR Links .. 262

Performance Utilities.. 262

Troubleshooting ...265

General Issues... 265

Ethernet Related Issues.. 266

InfiniBand Related Issues ... 267

Installation Related Issues ... 268

Installation Issues .. 268

Fixing Application Binary Interface (ABI) Incompatibility with MLNX_OFED Kernel
Modules .. 268

Overview... 269

Performance Related Issues .. 271

SR-IOV Related Issues .. 271

PXE (FlexBoot) Related Issues ... 272

RDMA Related Issues.. 272

Debugging Related Issues .. 273

OVS Offload Using ASAP2 Direct Related Issues... 273

Common Abbreviations and Related Documents...274

User Manual Revision History ..277

Release Notes Change Log History..278

10

•
•

Overview
Mellanox OpenFabrics Enterprise Distribution for Linux (MLNX_OFED) is a single Virtual Protocol
Interconnect (VPI) software stack that operates across all Mellanox network adapter solutions.
Mellanox OFED (MLNX_OFED) is a Mellanox tested and packaged version of OFED and supports two
interconnect types using the same RDMA (remote DMA) and kernel bypass APIs called OFED verbs –
InfiniBand and Ethernet. Up to 200Gb/s InfiniBand and RoCE (based on the RDMA over Converged
Ethernet standard) over 10/25/40/50/100/200GbE are supported with OFED by Mellanox to enable OEMs
and System Integrators to meet the needs end users in the said markets.
Further information on this product can be found in the following MLNX_OFED documents:

Release Notes
User Manual

Software Download
Please visit http://www.mellanox.com → Products → Software → InfiniBand/VPI Drivers → Linux SW/
Drivers
Document Revision History
For the list of changes made to the User Manual, refer to User Manual Revision History.
For the list of changes made to the Release Notes, refer to Release Notes Revision History.

http://www.mellanox.com/

11

•
•
•
•

•
•

•

•
•

•

•

•

•

•

•
•

1.

2.

Release Notes
Release Notes Update History
As of this version of MLNX_OFED, the following are no longer supported.

ConnectX-3
ConnectX-3 Pro
Connect-IB
RDMA experimental verbs libraries (mlnx_lib)

Users who wish to utilize the above devices/libraries are advised to refer to MLNX_OFED 4.9 long-term
support (LTS) version.

Revision Date Description

5.1-0.6.6.0 July 30, 2020 Initial release of this document version.

Supported NICs Speeds
These are the release notes of MLNX_OFED for Linux Driver, which operates across all Mellanox
network adapter solutions supporting the following uplinks to servers:

Uplink/NICs Driver
Name

Uplink Speed

ConnectX®-4 mlx5 InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GigE, 10GigE, 25GigE, 40GigE, 50GigE, 56GigE1,
and 100GigE

ConnectX®-4 Lx Ethernet: 1GigE, 10GigE, 25GigE, 40GigE, and 50GigE

ConnectX®-5/ConnectX®-5
Ex

InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GigE, 10GigE, 25GigE, 40GigE, 50GigE, and
100GigE

ConnectX®-6 InfiniBand - SDR, EDR, HDR

Ethernet - 10GbE, 25GbE, 40GbE, 50GbE2, 100GbE2,

200GbE2

ConnectX®-6 Dx Ethernet - 10GbE, 25GbE, 40GbE, 50GbE2, 100GbE2,
200GbE2

ConnectX®-6 Lx Ethernet - 1GigE, 10GigE, 25GigE, 40GigE, 50GigE2

Innova™ IPsec EN Ethernet: 10GigE, 40GigE

BlueField® InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GigE, 10GigE, 25GigE, 40GigE, 50GigE, and
100GigE

56 GbE is a Mellanox propriety link speed and can be achieved while connecting a Mellanox
adapter card to
Mellanox SX10XX switch series, or connecting a Mellanox adapter card to another Mellanox
adapter card.
Supports both NRZ and PAM4 modes.

12

Package Contents
Package Revision Licenses

ar_mgr 1.0-0.2.MLNX20200630.g8577618.51066 Mellanox Confidential and Proprietary

dpcp 1.0.0-1.51066 Proprietary

dump_pr 1.0-0.2.MLNX20200630.g8577618.51066 GPLv2 or BSD

fabric-collector 1.1.0.MLNX20170103.89bb2aa-0.1.5106
6

GPLv2 or BSD

hcoll 4.6.3125-1.51066 Proprietary

ibdump 6.0.0-1.51066 BSD2+GPL2

ibsim 0.9-1.51066 GPLv2 or BSD

ibutils2 2.1.1-0.126.MLNX20200721.gf95236b.
51066

Mellanox Confidential and Proprietary

iser 5.1-OFED.5.1.0.6.6.1 GPLv2

isert 5.1-OFED.5.1.0.6.6.1 GPLv2

kernel-mft 4.15.0-104 Dual BSD/GPL

knem 1.1.4.90mlnx1-OFED.5.1.0.6.1.1 BSD and GPLv2

libpka 1.0-1.gcc98895.51066 BSD

libvma 9.1.1-1 GPLv2 or BSD

mlnx-dpdk 19.11.0-1.51066 BSD and LGPLv2 and GPLv2

mlnx-en 5.1-0.6.6.0.gc72091b GPLv2

mlnx-ethtool 5.4-1.51066 GPL

mlnx-iproute2 5.6.0-1.51066 GPL

mlnx-nfsrdma 5.1-OFED.5.1.0.6.6.1 GPLv2

mlnx-nvme 5.1-OFED.5.1.0.6.6.1 GPLv2

mlnx-ofa_kernel 5.1-OFED.5.1.0.6.6.1 GPLv2

mlxbf-bootctl 1.0-2.51066 GPLv2 or BSD

mpi-selector 1.0.3-1.51066 BSD

13

•
•
•
•

Package Revision Licenses

mpitests 3.2.20-5d20b49.51066 BSD

mstflint 4.14.0-3.51066 GPL/BSD

multiperf 3.0-0.14.g5f0fd0e.51066 BSD 3-Clause, GPL v2 or later

mxm 3.7.3112-1.51066 Proprietary

ofed-docs 5.1-OFED.5.1.0.6.6 GPL/BSD

ofed-scripts 5.1-OFED.5.1.0.6.6 GPL/BSD

openmpi 4.0.4rc3-1.51066 BSD

opensm 5.7.0.MLNX20200721.7ccc6f6-0.1.51066 GPLv2 or BSD

openvswitch 2.13.1-1.51066 ASL 2.0 and LGPLv2+ and SISSL

perftest 4.4-0.30.g9c50960.51066 BSD 3-Clause, GPL v2 or later

rdma-core 51mlnx1-1.51066 GPLv2 or BSD

rshim 2.0.5-OFED.5.1.0.6.6 GPLv2

sharp 2.2.0.MLNX20200721.2fd570a-1.51066 Proprietary

sockperf 3.7-0.gita1e8e835a689.51066 BSD

srp 5.1-OFED.5.1.0.6.6.1 GPLv2

ucx 1.9.0-1.51066 BSD

Release Notes contain the following sections:
General Support in MLNX_OFED
Changes and New Features
Known Issues
Bug Fixes

General Support in MLNX_OFED

MLNX_OFED Supported Operating Systems

Operating System Platform Default Kernel Version

BCLinux 7.3 x86_64 3.10.0-514.el7.x86_64

BCLinux 7.4 x86_64 3.10.0-693.el7.x86_64

BCLinux 7.5 x86_64 3.10.0-862.el7.x86_64

BCLinux 7.6 x86_64 3.10.0-957.el7.x86_64

14

Operating System Platform Default Kernel Version

RHEL/CentOS 7.2 x86_64 3.10.0-327.el7.x86_64

RHEL/CentOS 7.4 x86_64 3.10.0-693.el7.x86_64

PPC64 3.10.0-693.el7.ppc64

PPC64LE 3.10.0-693.el7.ppc64le

RHEL 7.4 ALT Aarch64 4.11.0-44.el7a.aarch64

RHEL/CentOS 7.5 x86_64 3.10.0-862.el7.x86_64

PPC64 3.10.0-862.el7.ppc64

PPC64LE 3.10.0-862.el7.ppc64le

RHEL 7.5 ALT Aarch64 4.14.0-49.el7a.aarch64

RHEL/CentOS 7.6 x86_64 3.10.0-957.el7.x86_64

PPC64 3.10.0-957.el7.ppc64

PPC64LE 3.10.0-957.el7.ppc64le

RHEL 7.6 ALT Aarch64 4.14.0-115.el7a.0.1.aarch64

PPC64LE 4.14.0-115.el7a.ppc64le

RHEL/CentOS 7.7 x86_64 3.10.0-1062.el7.x86_64

PPC64 3.10.0-1062.el7.ppc64

PPC64LE 3.10.0-1062.el7.ppc64le

RHEL/CentOS 7.8 x86_64 3.10.0-1127.el7.x86_64

PPC64 3.10.0-1127.el7.ppc64

PPC64LE 3.10.0-1127.el7.ppc64le

RHEL/CentOS 8.0 x86_64 4.18.0-80.el8.x86_64

Aarch64 4.18.0-80.el8.aarch64

PPC64LE 4.18.0-80.el8.ppc64le

RHEL/CentOS 8.1 x86_64 4.18.0-147.el8.x86_64

Aarch64 4.18.0-147.el8.aarch64

PPC64LE 4.18.0-147.el8.ppc64le

RHEL/CentOS 8.2 x86_64 4.18.0-193.el8.x86_64

PPC64LE 4.18.0-193.el8.ppc64le

Debian 8.11 x86_64 3.16.0-6-amd64

Debian 9.9 x86_64 4.9.0-9-amd64

Debian 9.11 x86_64 4.9.0-11-amd64

Debian 10.0 x86_64 4.19.0-5-amd64

Aarch64 4.19.0-5-arm64

Debian 10.3 x86_64 4.19.0-8-amd64

Aarch64 4.19.0-8-arm64

Fedora 31 x86_64 5.3.7-301.fc31.x86_64

15

•
•

•

Operating System Platform Default Kernel Version

OL 7.6 x86_64 4.14.35-1844.0.7.el7uek.x86_64

OL 7.7 x86_64 4.14.35-1902.3.2.el7uek.x86_64

OL 7.8 x86_64 4.14.35-1902.300.11.el7uek.x86_64

OL 8.1 x86_64 4.18.0-147.el8.x86_64

OL 8.2 x86_64 5.4.17-2011.1.2.el8uek.x86_64

SLES12 SP3 x86_64 4.4.73-5-default

PPC64LE 4.4.73-5-default

SLES12 SP4 x86_64 4.12.14-94.41-default

Aarch64 4.12.14-94.41-default

PPC64LE 4.12.14-94.41-default

SLES12 SP5 x86_64 4.12.14-120-default

Aarch64 4.12.14-120-default

PPC64LE 4.12.14-120-default

SLES15 SP0 x86_64 4.12.14-23-default

SLES15 SP1 x86_64 4.12.14-195-default

Aarch64 4.12.14-195-default

PPC64LE 4.12.14-195-default

SLES15 SP2 x86_64 5.3.18-22-default

PPC64LE 5.3.18-22-default

Ubuntu 16.04 x86_64 4.4.0-22-generic

PPC64LE 4.4.0-21-generic

Ubuntu 18.04 x86_64 4.15.0-20-generic

Aarch64 4.15.0-29-generic

PPC64LE 4.15.0-20-generic

Ubuntu 19.04 x86_64 5.0.0-13-generic

Ubuntu 20.04 x86_64 5.4.0-26-generic

Aarch64 5.4.0-26-generic

PPC64LE 5.4.0-26-generic

Euler 2.0 SP8 Aarch64 4.19.36-vhulk1906.1.0.h288.eulerosv2r8.aarch64

Kernel 5.7 x86_64 5.7

Notes:
32 bit platforms are no longer supported in MLNX_OFED.
For RPM based distributions, if you wish to install OFED on a different kernel, you need to create
a new ISO image, using mlnx_add_kernel_support.sh script. See the MLNX_OFED User Manual
for instructions.
Upgrading MLNX_OFED on your cluster requires upgrading all of its nodes to the newest
version as well.

16

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

All OSs listed above are fully supported in Paravirtualized and SR-IOV Environments with Linux
KVM Hypervisor.

Supported Non-Linux Virtual Machines
The following are the supported non-Linux Virtual Machines in this current MLNX_OFED version:

NIC Windows Virtual Machine Type WinOF version Protocol

ConnectX-4 Windows 2012 R2 DC MLNX_WinOF2 2.50 IB, IPoIB, ETH

ConnectX-4 Lx Windows 2016 DC MLNX_WinOF2 2.50 IB, IPoIB, ETH

ConnectX-5 family All Windows server editions MLNX_WinOF2 2.50 IPoIB, ETH

ConnectX-6 family MLNX_WinOF2 2.50 IPoIB, ETH

Support in ASAP2™

ASAP2 Supported Operating Systems

OVS-Kernel SR-IOV Based Supported OSs

Below is a list of all the OSs that support OVS-Kernel ASAP2 in the current MLNX_OFED package.
BCLinux 7.4
BCLinux 7.5
BCLinux 7.6
RHEL/CentOS 7.4
RHEL/CentOS 7.5
RHEL/CentOS 7.6
RHEL/CentOS 7.7
RHEL/CentOS 7.8
RHEL/CentOS 8.0
RHEL/CentOS 8.1
RHEL/CentOS 8.2
Fedora 31
OL 7.4
OL 7.6
OL 7.7
OL 7.8
OL 8.1
OL 8.2
SLES12 SP4
SLES12 SP5
SLES15 SP1
SLES15 SP2
Ubuntu 16.04
Ubuntu 18.04
Ubuntu 19.04
Ubuntu 20.04
Kernel 5.7

17

•
•
•
•
•
•

•
•
•
•
•
•

•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

OVS-DPDK SR-IOV Based Supported OSs
Below is a list of all the OSs that support OVS-DPDK ASAP2 in the current MLNX_OFED package.

Adapter Card Type Supported OSs

ConnectX RHEL/CentOS 7.4
RHEL/CentOS 7.5
RHEL/CentOS 7.6
RHEL/CentOS 7.7
Ubuntu 18.04
Ubuntu 20.04

BlueField RHEL/CentOS 7.4
RHEL/CentOS 7.5
RHEL/CentOS 7.6
RHEL/CentOS 7.7
Ubuntu 18.04
Ubuntu 20.04

ASAP2 Requirements
iproute >= 4.12 (for tc support)
Upstream Open vSwitch >= 2.8 for CentOS 7.2 Mellanox openvswitch

ASAP2 Supported Adapter Cards
ConnectX-5
ConnectX-6 Dx

NFS over RDMA (NFSoRDMA) Supported Operating Systems
Below is a list of all the OSs on which NFSoRDMA is supported.

SLES12 SP4
SLES12 SP5
SLES15 SP1
SLES15 SP2
Ubuntu 18.04.3
Ubuntu 20.04 LTS
RedHat 7.5
RedHat 7.6
RedHat 7.7
RedHat 7.8
RedHat 8.0
RedHat 8.1
RedHat 8.2

Lustre Versions Supported by MLNX_OFED
Lustre 2.12.3
Lustre 2.13.0

18

•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•

NEO-Host Supported Operating Systems
RedHat 7.x
OL 7.x
SLES 12 SP3
SLES 12 SP4
SLES 12 SP5
SLES 15 SP0
SLES 15 SP1
Ubuntu 16.04
Ubuntu 18.04
Ubuntu 19.04
Debian 9.x
Debian 10.x

GPUDirect Storage (GDS) Supported Operating Systems
Ubuntu 18.04

Hardware and Software Requirements
The following are the hardware and software requirements of the current MLNX_OFED version.

Linux operating system
Administrator privileges on your machine(s)
Disk Space: 1GB

For the OFED Distribution to compile on your machine, some software packages of your operating
system (OS) distribution are required.
To install the additional packages, run the following commands per OS:

Operating
System

Required Packages Installation Command

RHEL/OL/
Fedora

yum install perl pciutils python gcc-gfortran libxml2-python tcsh libnl.i686
libnl expat glib2 tcl libstdc++ bc tk gtk2 atk cairo numactl pkgconfig
ethtool lsof

XenServer yum install perl pciutils python libxml2-python libnl expat glib2 tcl bc
libstdc++ tk pkgconfig ethtool

SLES 12 zypper install pkg-config expat libstdc++6 libglib-2_0-0 lib- gtk-2_0-0 tcl
libcairo2 tcsh python bc pciutils libatk-1_0-0 tk python-libxml2 lsof
libnl3-200 ethtool lsof

SLES 15 python ethtool libatk-1_0-0 python2-libxml2-python tcsh lib- stdc++6-devel-
gcc7 libgtk-2_0-0 tcl libopenssl1_1 libnl3-200 make libcairo2 expat libmnl0
insserv-compat pciutils lsof lib- glib-2_0-0 pkg-config tk

19

•
•
•
•
•
•
•

Operating
System

Required Packages Installation Command

Ubuntu/Debian apt-get install perl dpkg autotools-dev autoconf libtool auto- make1.10
automake m4 dkms debhelper tcl tcl8.4 chrpath swig graphviz tcl-dev tcl8.4-
dev tk-dev tk8.4-dev bison flex dpatch zlib1g-dev curl libcurl4-gnutls-dev
python-libxml2 libvirt-bin libvirt0 libnl-dev libglib2.0-dev libgfortran3
automake m4

pkg-config libnuma logrotate ethtool lsof

Supported NICs Firmware Versions

This current MLNX_OFED version supports the following Mellanox network adapter cards firmware
versions:

NIC Recommended Firmware Rev. Additional Firmware Rev.
Supported

ConnectX®-4 12.28.1002 12.27.1016

ConnectX®-4 Lx 14.28.1002 14.27.1016

ConnectX®-5/ConnectX®-5 Ex 16.28.1002 16.27.2008

ConnectX®-6 20.28.1002 20.27.2008

ConnectX®-6 Dx 22.28.1002 22.27.2008

ConnectX®-6 Lx 26.28.1002 N/A

Innova IPsec EN 16.28.1002 16.27.2008

BlueField™ 18.28.1002 18.27.2008

For the official firmware versions, please see:
https://www.mellanox.com/support/firmware/firmware-downloads

MLNX_OFED Unsupported Functionalities/Features/NICs
The following are the unsupported functionalities/features/NICs in MLNX_OFED current version:

ConnectX®-2 Adapter Card
ConnectX®-3 Adapter Card
ConnectX®-3 Pro Adapter Card
Connect-IB® Adapter Card
Relational Database Service (RDS)
mthca InfiniBand driver
Ethernet IPoIB (eIPoIB)

As of MLNX_OFED v5.1, ConnectX-3, ConnectX-3 Pro or Connect-IB NICs are no longer
supported. To work with a MLNX_OFED version that supports these adapter cards, please
refer to MLNX_OFED 4.9 long-term support (LTS) version.

https://www.mellanox.com/support/firmware/firmware-downloads

20

•
•

•
•

Soft-RoCE
RDMA experimental verbs library (mlnx_lib)

Changes and New Features

MLNX_OFED New Features
The following are the changes and/or new features that have been added to this version
of MLNX_OFED.

Feature/Change Description

Adapters: ConnectX-4 and above

IP-in-IP RSS Offload Added support for receive side scaling (RSS) offload in IP-in-IP (IPv4 and IPv6).

Devlink Port Support
in Non-representor
Mode

Added support for viewing the mlx5e physical devlink ports using the 'devlink port'
command. This also may affect network interface names, if predictable naming scheme
is configured. Suffix indicating a port number will be added to interface name.

Devlink Health State
Notifications

Added support for receiving notifications on devlink health state changes when an error
is reported or recovered by one of the reporters. These notifications can be seen using
the userspace ‘devlink monitor’ command.

Legacy SR-IOV VF
LAG Load Balancing

When VF LAG is in use, round-robin the Tx affinity of channels among the different ports,
if supported by the firmware, enables all SQs of a channel to share the same port affinity.
This allows the distribution of traffic sent from a VF between two ports, as well as round-
robin the starting port among VFs to distribute traffic originating from single-core VMs.

RDMA-CM DevX
Support

Added support for DevX in RDMA-CM applications.

RoCEv2 Flow Label
and UDP Source Port
Definition

This feature provides flow label and UDP source port definition in RoCE v2. Those fields
are used to create entropy for network routes (ECMP), load balancers and 802.3ad link
aggregation switching that are not aware of RoCE headers.

RDMA Tx Steering Enabled RDMA Tx steering flow table. Rules in this flow table will allow for steering
transmitted RDMA traffic.

Custom Parent-
Domain Allocators
for CQ

Enabled specific custom allocations for CQs.

mlx5dv Helper APIs
for Tx Affinity Port
Selection

Added support for the following mlx5dv helper APIs which enable the user application to
query or set a RAW QP's Tx affinity port number in a LAG configuration.

mlx5dv_query_qp_lag_port
mlx5dv_modify_qp_lag_port

RDMA-CM Path
Alignment

Added support for RoCE network path alignment between RDMA-CM message and QP
data. The drivers and network components in RoCE calculate the same hash results for
egress port selection both on the NICs and the switches.

IPoIB QP Number
Creation

Enabled setting the QP number of an IPoIB PKey interface in Enhanced mode. This is
done using the standard ip link add command while padding the hardware address of
the newly created interface. The QP number is the 2nd-4th bytes. To enable the feature,
the MKEY_BY_NAME configuration should firstly be enabled in the NvConfig.

CQ and QP Context
Exposure

Exposed QP, CQ and MR context in raw format via RDMA tool.

21

In-Driver xmit_more Enabled xmit_more feature by default in kernels that lack Rx bulking support (v4.19 and
above) to ensure optimized IP forwarding performance when stress from Rx to Tx flow is
insufficient.

In kernels with Rx bulking support, xmit_more is disabled in the driver by default, but
can be enabled to achieve enhanced IP forwarding performance.

Relaxed Ordering Relaxed ordering is a PCIe feature which allows flexibility in the transaction order over
the PCIe. This reduces the number of retransmissions on the lane, and increases
performance up to 4 times.

By default, mlx5e buffers are created with Relaxed Ordering support when firmware
capabilities are on and the PCI subsystem reports that CPU is not on the kernel's
blocklist.

Note: Some CPUs which are not listed in the kernel's blocklist may suffer from buggy
implementation of relaxed ordering, in which case the user may experience a
degradation in performance and even unexpected behavior. To turn off relaxed ordering
and restore previous behavior, run setpci command as instructed here. Example:

"RlxdOrd-“ : setpci -s82:00.0 CAP_EXP+8.w=294e

ODP Huge Pages
Support

Enabled ODP Memory Region (MR) to work with huge pages by exposing
IBV_ACCESS_HUGETLB access flag to indicate that the MR range is mapped by huge
pages.

The flag is applicable only in conjunction with IBV_ACCESS_ON_DEMAND.

Offloaded Traffic
Sniffer

Removed support for Offloaded Traffic Sniffer feature and replaced its function with
Upstream solution tcpdump tool.

Adapters: ConnectX-5 and above

Connection Tracking
Offload

Added support for offloading TC filters containing connection tracking matches and
actions.

Dual-Port RoCE
Support

Enabled simultaneous operation of dual-port RoCE and Ethernet in SwitchDev mode.

IP-in-IP Tunnel
Offload for
Checksum and TSO

Added support for the driver to offload checksum and TSO in IP-in-IP tunnels.

Packet Pacing DevX
Support

Enabled RiverMax to work over DevX with packet pacing functionality by exposing a few
DV APIs from rdma-core to enable allocating/destroying a packet pacing index. For
further details on usage, see man page for: mlx5dv_pp_alloc() and mlx5dv_pp_free().

Software Steering
Support for Memory
Reclaiming

Added support for reclaiming device memory to the system when it is not in use. This
feature is disabled by default and can be enabled using the command
mlx5dv_dr_domain_set_reclaim_device_memory().

SR-IOV Live
Migration

[Beta] Added support for performing a live migration for a VM with an SR-IOV NIC VF
attached to it and with minimal to no traffic disruption. This feature is supported in
SwitchDev mode; enabling users to fully leverage VF TC/OVS offloads, where the failover
inbox driver is in the Guest VM, and the bonding driver is in the Hypervisor.

Note that you must use the latest QEMU and libvirt from the Upstream github.com
sources.

Uplink Representor
Modes

Removed support for new_netdev mode in SwitchDev mode. The new default behaviour
is to always keep the NIC netdev.

Adapters: ConnectX-5 & ConnectX-6 Dx

https://linux.die.net/man/8/setpci
http://github.com

22

OvS-DPDK LAG
Support

Added support for LAG (modes 1,2,4) with OvS-DPDK.

Adapters: ConnectX-6 and above

Get FEC Status on
PAM4/50G

Allowed configuration of Reed Solomon and Low Latency Reed Solomon over PAM4 link
modes.

RDMA-CM Enhanced
Connection
Establishment (ECE)

Added support for allowing automatic enabling/disabling of vendor specific features
during connection establishment between network nodes, which is performed over
RDMA-CM messaging interface.

RoCE Selective
Repeat

This feature introduces a new QP retransmission mode in RoCE in which dropped packet
recovery is done by re-sending the packet instead of re-sending the PSN window only
(Go-Back-N protocol). This feature is enabled by default when RDMA-CM is being used
and both connection nodes support it.

Adapters: ConnectX-6 Dx & BlueField

IPsec Full Offload [Beta] Added support for IPsec full offload (VxLAN over ESP transport).

Adapters: ConnectX-6 Dx

IPsec Crypto
Offloads

Support for IPsec Crypto Offloads feature over ConnectX-6 Dx devices and up is now at
GA level.

TLS Tx Hardware
Offload

Support for TLS Tx Hardware Offload feature over ConnectX-6 Dx devices and up is now
at GA level.

TLS Rx Hardware
Offload

[Alpha] Added support for hardware offload decryption of TLS Rx traffic over crypto-
enabled ConnectX-6 Dx NICs and above.

Userspace Software
Steering ConnectX-6
Dx Support

Support for software steering on ConnectX-6 Dx adapter cards in the user-space RDMA-
Core library through the mlx5dv_dr API is now at GA level.

Kernel Software
Steering ConnectX-6
Dx Support

[Beta] Added support for kernel software steering on ConnectX-6 Dx adapter cards.

Adapters: ConnectX-6 Lx

Adapters Added support for ConnectX-6 Lx adapter cards.

Adapters: All

RDMA-Core
Migration

As of MLNX_OFED v5.1, Legacy verbs libraries have been fully replaced by RDMA-Core
library.

For the list of new APIs used for various MLNX_OFED features, please refer to the
Migration to RDMA-Core document.

Firmware
Reactivation

Added support for safely inserting consecutive firmware images without the need to
reset the NIC in between.

https://docs.mellanox.com/display/rdmacore50

23

•

•

UCX-CUDA Support UCX-CUDA is now supported on the following OSs and platforms.

OS Platform

RedHat 7.6 ALT PPC64LE

RedHat 7.7 x86_64

RedHat 7.8 PPC64LE/x86_64

RedHat 7.9 x86_64

RedHat 8.1 x86_64

RedHat 8.2 x86_64

HCOLL-CUDA The hcoll package includes a CUDA plugin (hmca_gpu_cuda.so). As of MLNX_OFED v5.1,
it is built on various platforms as the package hcoll-cuda. It will be installed by default if
the system has CUDA 10-2 installed.

Notes:

If you install MLNX_OFED from a package repository, you will need to install the
package hcoll-cuda explicitly to be able to use it.
HCOLL-CUDA is supported on the same OSs that include support for UCX-CUDA
(listed in the table above), except for RedHat 8.1 and 8.2.

GPUDirect Storage (G
DS)

[Beta] Added support for the new technology of GDS (GPUDirect Storage) which enables
a direct data path between local or remote storage, such as NFS, NVMe or NVMe over
Fabric (NVMe-oF), and GPU memory. Both GPUDirect RDMA and GPUDirect Storage
avoid extra copies through a bounce buffer in the CPU's memory. They enable the direct
memory access (DMA) engine near the NIC or storage to move data on a direct path into
or out of GPU memory, without burdening the CPU or GPU.

To enable the feature, run ./mlnxofedinstall --with-nfsrdma –-with-nvmf --
enable-gds --add-kernel-support

To get access to GDS Beta, please reach out to the GDS team at
GPUDirectStorageExt@nvidia.com.

For the list of operating systems on which GDS is supported, see here.

Bug Fixes See “Bug Fixes" section.

For additional information on the new features, please refer to MLNX_OFED User Manual.

API Changes in MLNX_OFED

MLNX_OFED Verbs API Migration
As of MLNX_OFED v5.0 release (Q1 of the year 2020), MLNX_OFED Verbs API have migrated from the
legacy version of user space verbs libraries (libibervs, libmlx5, etc.) to the Upstream version rdma-
core.
For details on how to install Mellanox Legacy libraries, refer to Installing Mellanox Legacy
Libraries section in the User Manual.
For the list of MLNX_OFED verbs APIs that have been migrated, refer to Migration to RDMA-Core
document.

http://hmca_gpu_cuda.so
https://docs.mellanox.com/display/rdmacore50
https://docs.mellanox.com/display/rdmacore50

24

Known Issues
The following is a list of general limitations and known issues of the various components of this
Mellanox OFED for Linux release.
For the list of old known issues, please refer to Mellanox OFED Archived Known Issues file at: http://
www.mellanox.com/pdf/prod_software/MLNX_OFED_Archived_Known_Issues.pdf

Internal Ref.
Number

Issue

2209987 Description: aRFS feature (activated using "ethtool ntuple on") is disabled for kernel 4.1 or
below.

Workaround: N/A

Keywords: aRFS

Discovered in Release: 5.1-0.6.6.0

2200320 Description: In case MLNX_OFED is re-installed on a certain system without using --
force, the installation may fail requiring the removal of infiniband-diags package.

Workaround: Remove the infiniband-diags package using rpm -e.

Keywords: Installation, infiniband-diags

Discovered in Release: 5.1-0.6.6.0

2248996 Description: Downgrading the firmware version for ConnectX-6 cards using "mlnx_ofed_in
stall --fw-update-only --force-fw-update" fails.

Workaround: Manually downgrade the firmware version - please see Firmware Update
Instructions.

Keywords: Firmware, ConnectX-6

Discovered in Release: 5.1-0.6.6.0

2244336 Description: AF_XDP is not functional.

Workaround: N/A

Keywords: AF_XDP

Discovered in Release: 5.1-0.6.6.0

2175930 Description: When using OFED 5.1 on PPC architectures with kernels v5.5 or v5.6 and an
old ethtool utility, a harmless warning call trace may appear in the dmesg due to mismatch
between user space and kernel. The warning call trace mentions ethtool_notify.

Workaround: Update the ethtool utility to version 5.6 on such systems in order to avoid the
call trace.

Keywords: PPC, ethtool_notify, kernel

Discovered in Release: 5.1-0.6.6.0

2192791 Description: The packages neohost-backend and neohost-sdk are not properly removed by
the uninstallation procedure and may require manual removal before re-installing or
upgrading the MLNX_OFED driver.

Workaround: Manually remove the packages by running: rpm -e neohost-backend
neohost-sdk

http://www.mellanox.com/pdf/prod_software/MLNX_OFED_Archived_Known_Issues.pdf
http://www.mellanox.com/pdf/prod_software/MLNX_OFED_Archived_Known_Issues.pdf
https://www.mellanox.com/support/firmware/update-instructions
https://www.mellanox.com/support/firmware/update-instructions

25

Internal Ref.
Number

Issue

Keywords: NEO-Host, SDK

Discovered in Release: 5.1-0.6.6.0

2198764 Description: If MLNX_OFED is installed on a Debian or Ubuntu system that is run in chroot
environment, the openibd service will not be enabled. If the chroot files are being used as a
base of a full system, the openibd service is left disabled.

Workaround: Currently, openibd is a sysv-init script that you can enable manually by
running: update-rc.d openibd defaults

Keywords: chroot, Debian , Ubuntu, openibd

Discovered in Release: 5.1-0.6.6.0

2237134 Description: Running connection tracking (CT) with FW steering may cause
CREATE_FLOW_TABLE command to fail with syndrome.

Workaround: Configure OVS to use a single handler-thread:

#ovs-vsctl set Open_vSwitch . other_config:n-handler-threads=1

Keywords: Connection tracking, ASAP, OVS, FW steering

Discovered in Release: 5.1-0.6.6.0

2239894 Description: Running OpenVSwitch offload with high traffic throughput can cause low
insertion rate due to high CPU usage.

Workaround: Reduce the number of combined channels of the uplink using "ethtool -L".

Keywords: Insertion rate, ASAP2

Discovered in Release: 5.1-0.6.6.0

2240671 Description: Header rewrite action is not supported over RHEL/CentOS 7.4.

Workaround: N/A

Keywords: ASAP, header rewrite, RHEL, RedHat, CentOS, OS

Discovered in Release: 5.1-0.6.6.0

2242546 Description: Tunnel offload (encap/decap) may cause kernel panic if nf_tables module is
not probed.

Workaround: Make sure to probe the nf_tables module before inserting any rule.

Keywords: Kernel v5.7, ASAP, kernel panic

Discovered in Release: 5.1-0.6.6.0

2244416 Description: Configuring "other" channels over one representor is not supported and may
cause a call trace.

Workaround: N/A

Keywords: ASAP, SwitchDev, ethtool, representor

Discovered in Release: 5.1-0.6.6.0

2143007 Description: IPsec packets are dropped during heavy traffic due to a bug in net/xfrm Linux
Kernel.

26

Internal Ref.
Number

Issue

Workaround: Make sure the Kernel is modified to apply the following patch: "xfrm: Fix
double ESP trailer insertion in IPsec crypto offload".

Keywords: IPsec, xfrm

Discovered in Release: 5.1-0.6.6.0

2225952 Description: VF mirroring with TC policy skip_sw is not supported on RHEL/CentOS 7.4, 7.5
and 7.6 OSs.

Workaround: N/A

Keywords: ASAP2, Mirroring, RHEL, RedHat, OS

Discovered in Release: 5.1-0.6.6.0

2216521 Description: After upgrading MLNX_OFED from v5.0 or earlier, ibdev2netdev utility changes
the installation prefix to /usr/sbin. Therefore, it cannot be found while found in the same
SHELL environment.

Workaround: After installing MLNX_OFED, log out and log in again to refresh the SHELL
environment.

Keywords: ibdev2netdev

Discovered in Release: 5.1-0.6.6.0

2202520 Description: Rules with VLAN push/pop, encap/decap and header rewrite actions together
are not supported.

Workaround: N/A

Keywords: ASAP2, SwitchDev, VLAN push/pop, encap/decap, header rewrite

Discovered in Release: 5.1-0.6.6.0

2210752 Description: Switching from Legacy mode to SwitchDev mode and vice-versa while TC rules
exist on the NIC will result in failure.

Workaround: Before attempting to switch mode, make sure to delete all TC rules on the
NIC or stop OpenvSwitch.

Keywords: ASAP2, Devlink, Legacy SR-IOV

Discovered in Release: 5.1-0.6.6.0

2125036/2125031 Description: Upgrading the MLNX_OFED from an UPSTREAM_LIBS based version to an
MLNX_LIBS based version fails unless the driver is uninstalled and then re-installed.

Workaround: Make sure to uninstall and re-install MLNX_OFED to complete the upgrade.

Keywords: Installation, UPSTREAM_LIBS, MLNX_LIBS

Discovered in Release: 5.0-2.1.8.0

2105447 Description: hns_roce warning messages will appear in the dmesg after reboot on Euler2
SP3 OSs.

Workaround: N/A

Keywords: hns_roce, dmesg, Euler

Discovered in Release: 5.0-2.1.8.0

27

Internal Ref.
Number

Issue

2110321 Description: Multiple driver restarts may cause IPoIB soft lockup.

Workaround: N/A

Keywords: Driver restart, IPoIB

Discovered in Release: 5.0-2.1.8.0

2112251 Description: On kernels 4.10-4.14, when Geneve tunnel's remote endpoint is defined using
IPv6, packets larger than MTU are not fragmented, resulting in no traffic sent.

Workaround: Define geneve tunnel's remote endpoint using IPv4.

Keywords: Kernel, Geneve, IPv4, IPv6, MTU, fragmentation

Discovered in Release: 5.0-2.1.8.0

2119210 Description: Multiple driver restarts may cause a stress and result in mlx5 commands
check error message in the log.

Workaround: N/A

Keywords: Driver restart, syndrome, error message

Discovered in Release: 5.0-2.1.8.0

2118956 Description: mlx5dv_dr API does not support sub functions (SFs) as destination actions.

Workaround: Create the SFs only after domain creation.

Keywords: mlx5dv_dr, sub functions, SF

Discovered in Release: 5.0-2.1.8.0

2102902 Description: A kernel panic may occur over RH8.0-4.18.0-80.el8.x86_64 OS when opening
kTLS offload connection due to a bug in kernel TLS stack.

Workaround: N/A

Keywords: TLS offload, mlx5e

Discovered in Release: 5.0-2.1.8.0

2111534 Description: A Kernel panic may occur over Ubuntu19.04-5.0.0-38-generic OS when
opening kTLS offload connection due to a bug in the Kernel TLS stack.

Workaround: N/A

Keywords: TLS offload, mlx5e

Discovered in Release: 5.0-2.1.8.0

2117845 Description: Relaxed ordering memory regions are not supported when working with CAPI.
Registering memory region with relaxed ordering while CAPI enabled will result in a
registration failure.

Workaround: N/A

Keywords: Relaxed ordering, memory region, MR, CAPI

Discovered in Release: 5.0-2.1.8.0

28

1.
2.

Internal Ref.
Number

Issue

2083942 Description: The content of file /sys/class/net/<NETIF>/statistics/multicast may be out of
date and may display values lower than the real values.

Workaround: Run ethtool -S <NETIF> to show the actual multicast counters and to
update the content of file /sys/class/net/<NETIF>/statistics/multicast.

Keywords: Multicast counters

Discovered in Release: 5.0-1.0.0.0

2035950 Description: An internal error might take place in the firmware when performing any of the
following in VF LAG mode, when at least one VF of either PF is still bound/attached to a VM.

Removing PF from the bond (using ifdown, ip link or any other function)
Attempting to disable SR-IOV

Workaround: N/A

Keywords: VF LAG, binding, firmware, FW, PF, SR-IOV

Discovered in Release: 5.0-1.0.0.0

2094176 Description: When running in a large scale in VF-LAG mode, bandwidth may be unstable.

Workaround: N/A

Keywords: VF LAG

Discovered in Release: 5.0-1.0.0.0

2044544 Description: When working with OSs with Kernel v4.10, bonding module does not allow
setting MTUs larger than 1500 on a bonding interface.

Workaround: Upgrade your Kernel version to v4.11 or above.

Keywords: Bonding, MTU, Kernel

Discovered in Release: 5.0-1.0.0.0

1882932 Description: Libibverbs dependencies are removed during OFED installation, requiring
manual installation of libraries that OFED does not reinstall.

Workaround: Manually install missing packages.

Keywords: libibverbs, installation

Discovered in Release: 5.0-1.0.0.0

2058535 Description: ibdev2netdev command returns duplicate devices with different ports in
SwitchDev mode.

Workaround: Use /opt/mellanox/iproute2/sbin/rdma link show command instead.

Keywords: ibdev2netdev

Discovered in Release: 5.0-1.0.0.0

2072568 Description: In RHEL/CentOS 7.2 OSs, adding drop rules when act_gact is not loaded may
cause a kernel crash.

Workaround: Preload all needed modules to avoid such a scenario (cls_flower, act_mirred,
act_gact, act_tunnel_key and act_vlan).

Keywords: RHEL/CentOS 7.2, Kernel 4.9, call trace, ASAP

Discovered in Release: 5.0-1.0.0.0

29

Internal Ref.
Number

Issue

2093698 Description: VF LAG configuration is not supported when the NUM_OF_VFS configured in
mlxconfig is higher than 64.

Workaround: N/A

Keywords: VF LAG, SwitchDev mode, ASAP

Discovered in Release: 5.0-1.0.0.0

2093746 Description: Devlink health dumps are not supported on kernels lower than v5.3.

Workaround: N/A

Keywords: Devlink, health report, dump

Discovered in Release: 5.0-1.0.0.0

2000590 Description: Sending packets larger than MTU is not supported when working with OVS-
DPDK.

Workaround: N/A

Keywords: MTU, OVS-DPDK

Discovered in Release: 5.0-1.0.0.0

2062900 Description: Moving VF from SwitchDev mode to Legacy mode while the representor is
being used by OVS-DPDK results in a segmentation fault.

Workaround: To move VF to Legacy mode with no error, make sure to delete the ports from
the OVS.

Keywords: SwitchDev, Legacy, representor, OVS-DPDK

Discovered in Release: 5.0-1.0.0.0

2075942 Description: Huge pages configuration is lost each time the server is configured.

Workaround: Re-configure the huge pages after each reboot, or configure them as a kernel
parameter.

Keywords: Huge pages, reboot, OVS-DPDK

Discovered in Release: 5.0-1.0.0.0

2083427 Description: For kernels with connection tracking support, neigh update events are not
supported, requiring users to have static ARPs to work with OVS and VxLAN.

Workaround: N/A

Keywords: VxLAN, VF LAG, neigh, ARP

Discovered in Release: 5.0-1.0.0.0

2067012 Description: MLNX_OFED cannot be installed on Debian 9.11 OS in SwitchDev mode.

Workaround: Install OFED with the flag --add-kernel-support.

Keywords: ASAP, SwitchDev, Debian, Kernel

Discovered in Release: 5.0-1.0.0.0

2067746 Description: When attaching a second slave to a bond, some bond interface GIDs might
disappear.

30

Internal Ref.
Number

Issue

Workaround: Re-create and re-configure the bond device.

Keywords: Bond, GID

Discovered in Release: 5.0-1.0.0.0

2036572 Description: When using a thread domain and the lockless rdma-core ibv_post_send path,
there is an additional CPU penalty due to required barriers around the device MMIO buffer
that were omitted in MLNX_OFED.

Workaround: N/A

Keywords: rdma-core, write-combining, MMIO buffer

Discovered in Release: 5.0-1.0.0.0

- Description: The argparse module is installed by default in Python versions =>2.7 and
>=3.2. In case an older Python version is used, the argparse module is not installed by
default.

Workaround: Install the argparse module manually.

Keywords: Python, MFT, argparse, installation

Discovered in Release: 4.7-3.2.9.0

1997230 Description: Running mlxfwreset or unloading mlx5_core module while contrak flows are
offloaded may cause a call trace in the kernel.

Workaround: Stop OVS service before calling mlxfwreset or unloading mlx5_core module.

Keywords: Contrak, ASAP, OVS, mlxfwrest, unload

Discovered in Release: 4.7-3.2.9.0

1955352 Description: Moving 2 ports to SwitchDev mode in parallel is not supported.

Workaround: N/A

Keywords: ASAP, SwitchDev

Discovered in Release: 4.7-3.2.9.0

1979958 Description: VxLAN IPv6 offload is not supported over CentOS/RHEL v7.2 OSs.

Workaround: N/A

Keywords: Tunnel, VXLAN, ASAP, IPv6

Discovered in Release: 4.7-3.2.9.0

1980884 Description: Setting VF VLAN, state and spoofchk using ip link tool is not supported in
SwitchDev mode.

Workaround: N/A

Keywords: ASAP, ip tool, VF, SwitchDev

Discovered in Release: 4.7-3.2.9.0

1991710 Description: PRIO_TAG_REQUIRED_EN configuration is not supported and may cause call
trace.

Workaround: N/A

Keywords: ASAP, PRIO_TAG, mstconfig

Discovered in Release: 4.7-3.2.9.0

31

•

•

•

•

Internal Ref.
Number

Issue

1970429 Description: With HW offloading in SR-IOV SwitchDev mode, the fragmented ICMP echo
request/reply packets (with length larger than MTU) do not function properly. The correct
behavior is for the fragments to miss the offloading flow and go to the slow path. However,
the current behavior is as follows.

Ingress (to the VM): All echo request fragments miss the corresponding offloading
flow, but all echo reply fragments hit the corresponding offloading flow
Egress (from the VM): The first fragment still hits the corresponding offloading flow,
and the subsequent fragments miss the corresponding offloading flow

Workaround: N/A

Keywords: HW offloading, SR-IOV, SwitchDev, ICMP, VM, virtualization

Discovered in Release: 4.7-3.2.9.0

1967866 Description: Enabling ECMP offload requires the VFs to be unbound and VMs to be shut
down.

Workaround: N/A

Keywords: ECMP, Multipath, ASAP2

Discovered in Release: 4.7-3.2.9.0

1921981 Description: On Ubuntu, Debian and RedHat 8 and above OSS, parsing the mfa2 file using
the mstarchive might result in a segmentation fault.

Workaround: Use mlxarchive to parse the mfa2 file instead.

Keywords: MFT, mfa2, mstarchive, mlxarchive, Ubuntu, Debian, RedHat, operating system

Discovered in Release: 4.7-1.0.0.1

1840288 Description: MLNX_OFED does not support XDP features on RedHat 7 OS, despite the
declared support by RedHat.

Workaround: N/A

Keywords: XDP, RedHat

Discovered in Release: 4.7-1.0.0.1

1821235 Description: When using mlx5dv_dr API for flow creation, for flows which execute the
"encapsulation" action or "push vlan" action, metadata C registers will be reset to zero.

Workaround: Use the both actions at the end of the flow process.

Keywords: Flow steering

Discovered in Release: 4.7-1.0.0.1

1888574 Description: Kernel support limitations in the current MLNX_OFED version:

SR-IOV SwitchDev is only supported on Kernel 4.14 and above, and on RedHat/
CentOS 7.4, 7.5 and 7.6.
SR-IOV Legacy is only supported on Kernel 4.3 and above, and on RedHat/CentOS
7.4, 7.5, 7.6 and 7.7.

Workaround: N/A

Keywords: SwitchDev, ASAP, Kernel , SR-IOV, RedHat, RHEL

Discovered in Release: 4.7-1.0.0.1

1892663 Description: mlnx_tune script does not support python3 interpreter.

32

Internal Ref.
Number

Issue

Workaround: Run mlnx_tune with python2 interpreter only.

Keywords: mlnx_tune, python3, python2

Discovered in Release: 4.7-1.0.0.1

1504785 Description: A lost interrupt issue in pass-through virtual machines may prevent the driver
from loading, followed by printing managed pages errors to the dmesg.

Workaround: Restart the driver.

Keywords: VM, virtual machine

Discovered in Release: 4.6-1.0.1.1

1764415 Description: Unbinding PFs on LAG devices results in a "Failed to modify QP to RESET"
error message.

Workaround: N/A

Keywords: RoCE LAG, unbind, PF, RDMA

Discovered in Release: 4.6-1.0.1.1

1806565 Description: RoCE default GIDs v1 and v2 are derived from the MAC address of the
corresponding netdevice's PCI function, and they resemble the IPv6 address. However, in
systems where the IPv6 link local address generated does not depend on the MAC address,
RoCEv2 default GID should not be used.

Workaround: Use RoCEv2 default GID.

Keywords: RoCE

Discovered in Release: 4.6-1.0.1.1

1834997 Description: When working with VF Lag while the bond device is in active-active mode,
traffic on both physical ports may not reach line rate.

Workaround: N/A

Keywords: VF LAG, bonding, bandwidth degradation, fairness

Discovered in Release: 4.6-1.0.1.1

- Description: Aging is not functional on bond device in RHEL 7.6.

Workaround: N/A

Keywords: VF LAG, ASAP2

Discovered in Release: 4.6-1.0.1.1

1747774 Description: In VF LAG mode, outgoing traffic in load balanced mode is according to the
origin ring, thus, half of the rings will be coupled with port 1 and half with port 2. All the
traffic on the same ring will be sent from the same port.

Workaround: N/A

Keywords: VF LAG, ASAP2

Discovered in Release: 4.6-1.0.1.1

1735161 Description: Innova cards do no support InfiniBand mode.

Workaround: N/A

Keywords: Innova, IB, InfiniBand

33

Internal Ref.
Number

Issue

Discovered in Release: 4.6-1.0.1.1

1787667 Description: NVMe-oF driver of MLNX OFED v4.6-x.x.x.x does not function on SLES12 SP4
and SLES15 SP1 OSs, as they have a built-in NVME driver in the Linux image. Therefore,
Mellanox NVME and NVME-oF drivers cannot be loaded.

For tracking purposes of this bug, see Bugzilla issue #1150850 and Bugzilla issue
#1150846.

Workaround: Change the kernel configuration of NVMe-oF driver to be "=m" and recompile
the kernel.

Keywords: NVME-oF, NVME, SLES

Discovered in Release: 4.6-1.0.1.1

1753629 Description: A bonding bug found in Kernels 4.12 and 4.13 may cause a slave to become
permanently stuck in BOND_LINK_FAIL state. As a result, the following message may
appear in dmesg:

bond: link status down for interface eth1, disabling it in 100 ms

Workaround: N/A

Keywords: Bonding, slave

Discovered in Release: 4.6-1.0.1.1

1712068 Description: Uninstalling MLNX_OFED automatically results in the uninstallation of several
libraries that are included in the MLNX_OFED package, such as InfiniBand-related
libraries.

Workaround: If these libraries are required, reinstall them using the local package
manager (yum/dnf).

Keywords: MLNX_OFED libraries

Discovered in Release: 4.6-1.0.1.1

- Description: Due to changes in libraries, MFT v4.11.0 and below are not forward compatible
with MLNX_OFED v4.6-1.0.0.0 and above.
Therefore, with MLNX_OFED v4.6-1.0.0.0 and above, it is recommended to use MFT v4.12.0
and above.

Workaround: N/A

Keywords: MFT compatible

Discovered in Release: 4.6-1.0.1.1

1730840 Description: On ConnectX-4 HCAs, GID index for RoCE v2 is inconsistent when toggling
between enabled and disabled interface modes.

Workaround: N/A

Keywords: RoCE v2, GID

Discovered in Release: 4.6-1.0.1.1

1717428 Description: On kernels 4.10-4.14, MTUs larger than 1500 cannot be set for a GRE interface
with any driver (IPv4 or IPv6).

Workaround: Upgrade your kernel to any version higher than v4.14.

Keywords: Fedora 27, gretap, ip_gre, ip_tunnel, ip6_gre, ip6_tunnel

https://bugzilla.suse.com/show_bug.cgi?id=1150850
https://bugzilla.suse.com/show_bug.cgi?id=1150846
https://bugzilla.suse.com/show_bug.cgi?id=1150846

34

Internal Ref.
Number

Issue

Discovered in Release: 4.6-1.0.1.1

1748343 Description: Driver reload takes several minutes when a large number of VFs exists.

Workaround: N/A

Keywords: VF, SR-IOV

Discovered in Release: 4.6-1.0.1.1

1748537 Description: Cannot set max Tx rate for VFs from the ARM.

Workaround: N/A

Keywords: Host control, max Tx rate

Discovered in Release: 4.6-1.0.1.1

1732940 Description: Software counters not working for representor net devices.

Workaround: N/A

Keywords: mlx5, counters, representors

Discovered in Release: 4.6-1.0.1.1

1733974 Description: Running heavy traffic (such as 'ping flood') while bringing up and down other
mlx5 interfaces may result in “INFO: rcu_preempt dectected stalls on CPUS/tasks:”
call traces.

Workaround: N/A

Keywords: mlx5

Discovered in Release: 4.6-1.0.1.1

1731939 Description: Get/Set Forward Error Correction FEC configuration is not supported on
ConnectX-6 HCAs with 200Gbps speed rate.

Workaround: N/A

Keywords: Forward Error Correction, FEC, 200Gbps

Discovered in Release: 4.6-1.0.1.1

- Description: On ConnectX-6 HCAs and above, an attempt to configure advertisement (any
bitmap) will result in advertising the whole capabilities.

Workaround: N/A

Keywords: 200Gmbps, advertisement, Ethtool

Discovered in Release: 4.6-1.0.1.1

1699289 Description: HW LRO feature is disabled OOB, which results in increased CPU utilization on
the Receive side. On ConnectX-5 adapter cards and above, this causes a bandwidth drop for
a few streams.

Workaround: Make sure to enable HW LRO in the driver:

ethtool -k <intf> lro

ethtool --set-priv-flag <intf> hw_lro on

Keywords: HW LRO, ConnectX-5 and above

Discovered in Release: 4.5-1.0.1.0

35

•
•
•
•
•
•
•
•
•

Internal Ref.
Number

Issue

1403313 Description: Attempting to allocate an excessive number of VFs per PF in operating
systems with kernel versions below v4.15 might fail due to a known issue in the Kernel.

Workaround: Make sure to update the Kernel version to v4.15 or above.

Keywords: VF, PF, IOMMU, Kernel, OS

Discovered in Release: 4.5-1.0.1.0

- Description: NEO-Host is not supported on the following OSs:

SLES12 SP3
SLES12 SP4
SLES15
Fedora 28
RHEL7.1
RHEL7.4 ALT (Pegas1.0)
REL 7.5
RHEL7.6
XenServer 4.9

Workaround: N/A

Keywords: NEO-Host, operating systems

Discovered in Release: 4.5-1.0.1.0

1521877 Description: On SLES 12 SP1 OSs, a kernel tracepoint issue may cause undefined behavior
when inserting a kernel module with a wrong parameter.

Workaround: N/A

Keywords: mlx5 driver, SLES 12 SP1

Discovered in Release: 4.5-1.0.1.0

Bug Fixes
This table lists the bugs fixed in this release.
For the list of old bug fixes, please refer to MLNX_OFED Archived Bug Fixes file at:
http://www.mellanox.com/pdf/prod_software/MLNX_OFED_Archived_Bug_Fixes.pdf

Internal
Reference
Number

Description

2020260 Description: Fixed the issue of when changing the Trust mode to DSCP, there was an
interval between the change taking effect in the hardware and updating the inline mode
of the SQ in the driver. If any traffic was transmitted during this interval, the driver would
not inline enough headers, resulting in a CQE error in the NIC.

Keywords: DSCP, inline, SQ, CQE

Discovered in Release: 5.0-1.0.0.0

http://www.mellanox.com/pdf/prod_software/MLNX_OFED_Archived_Bug_Fixes.pdf

36

Internal
Reference
Number

Description

Fixed in Release: 5.1-0.6.6.0

2105631 Description: Removed IBV_FLOW_ATTR_FLAGS_ALLOW_LOOP_BACK flag as it is not
used by the kernel.

Keywords: IBV_FLOW_ATTR_FLAGS_ALLOW_LOOP_BACK

Discovered in Release: 4.7-1.0.0.1

Discovered in Release: 5.0-1.0.0.0

2099043 Description: Added QP isolation to improve SW steering performance under high packet
load. This will allow SW steering RC QP to be executed on a separate scheduling queue
without competing over hardware resources.

Keywords: Software steering, ASAP, connection tracking, CT

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.1-0.6.6.0

2097045 Description: Userspace Software Steering using mlx5dv_dr API support on ConnectX-6
Dx adapter cards is now at GA level.

Keywords: Software Steering, SW, mlx5dv_dr, ConnectX-6 Dx

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2132332 Description: Fixed a sporadic reporting bandwidth issue in case of running with --
run_infinitely flag.

Keywords: perftest, bandwidth

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2151658 Description: Optimized XRC target lookup by modifying the locking scheme to enable
multiple readers and changing the linked list that holds the QPs to xarray.

Keywords: XRC, QP, xarray

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2196118 Description: Fixed a driver issue that led to panic after DPDK application crashes.

Keywords: DPDK, panic

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.1-0.6.6.0

2245228 Description: Fixed an issue of a crash when attempting to access roce_enable sysfs in
unprobed VFs.

Keywords: roce_enable, unprobed VFs

37

Internal
Reference
Number

Description

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2061294 Description: Fixed a race of commands executed by command interface in parallel to
AER recovery causing the kernel to crash.

Keywords: mlx5e, AER

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.1-0.6.6.0

2131951 Description: Fixed an issue in MLNX_OFED build system that broke RPM sign process
for random packages; all RPMs are now signed properly.

Keywords: RPM, sign

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.1-0.6.6.0

2143067 Description: If Openibd was configured to enable the SRP daemon, it now also enables
srp_daemon from rdma-core.

Keywords: Openibd, SRP daemon, srp_daemon, rdma-core

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.1-0.6.6.0

2143094 Description: Regenerated package repository in the correct location after rebuilding the
kernel using add-kernel-support. This allows for installing the newly generated
packages with a package manager.

Keywords: add-kernel-support, RPM, deb

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.1-0.6.6.0

2172130 Description: Fixed an issue with metadata packages generation in the eth-only directory.
This allows using the directory as a repository for package managers.

Keywords: Metadata packages

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2214543 Description: Moved ibdev2netdev script from /usr/bin to /usr/sbin in the RPM package to
avoid package conflict with RHEL 8 and consequent MLNX_OFED installation failure on
some systems.

Keywords: ibdev2netdev, RPM, RHEL, RedHat

Discovered in Release:

Fixed in Release: 5.1-0.6.6.0

38

Internal
Reference
Number

Description

2211311 Description: Fixed an issue where Rx port buffers cell size was wrong, leading to wrong
buffers size reported by mlnx_qos/netdev qos/buffer_size sysfs.

Keywords: mlx5e, RX buffers, mlnx_qos

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2111349 Description: Fixed the issue where ethtool --show-fec/--get-fec were not supported
over ConnectX-6 and ConnectX-6 Dx adapter cards.

Keywords: Ethtool, ConnectX-6 Dx

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

2165668 Description: Fixed an issue related to mlx5 command interface that in some
scenarios caused the driver to hang.

Keywords: ConnectX-5, mlx5, panic

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.1-0.6.6.0

2119984 Description: Fixed the issue where IPsec crypto offloads did not work when ESN was
enabled.

Keywords: IPsec, ESN

Discovered in Release: 5.0-2.1.8.0

Fixed in Release: 5.1-0.6.6.0

1630228 Description: Fixed the issue where tunnel stateless offloads were wrongly forbidden for
E-Switch manager function.

Keywords: Stateless offloads cap

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.1-0.6.6.0

2089996 Description: Fixed the issue where dump flows were not supported and may have been
corrupted when using tc tool with connection tracking rules.

Keywords: ASAP, iproute2, tc, connection tracking

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.1-0.6.6.0

2094216 Description: Fixed the issue of when one of the LAG slaves went down, LAG deactivation
failed, ultimately causing bandwidth degradation.

Keywords: RoCE LAG

Discovered in Release: 4.7-3.2.9.0

39

Internal
Reference
Number

Description

Fixed in Release: 5.1-0.6.6.0

2133778 Description: The mlx5 driver maintains a subdirectory for every open eth port in /sys/
kernel/debug/. For the default network namespace, the sub-directory name is the name
of the interface, like "eth8". The new convention for the network interfaces moved to the
non-default network namespaces is the interfaces name followed by "@" and the port's
PCI ID. For example: "eth8@0000:af:00.3".

Keywords: Namespace

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2076546 Description: Fixed the issue where in RPM-based OSs with non-default kernels, using
repositories after re-creating the installer (using --add-kernel-support) would result in
improper installation of the drivers.

Keywords: Installation, OS

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.1-0.6.6.0

2114957 Description: Fixed the issue where MLNX_OFED installation may have depended on
python2 package even when attempting to install it on OSs whose default package is
python3.

Keywords: Installation, python

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2122684 Description: Fixed the issue where OFED uninstallation resulted in the removal of
dependency packages, such as qemu-system-* (qemu-system-x86).

Keywords: Uninstallation, dependency, qemu-system-x86

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2135476 Description: Added KMP ability to install MLNX_OFED Kernel modules on SLES12 SP5
and SLES15 kernel maintenance updates.

Keywords: KMP, SLES, kernel

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2143258 Description: Fixed a typo in perftest package where help messages wrongly displayed
the conversion result between Gb/s and MB/s (20^2 instead of 2^20).

Keywords: perftest

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

40

Internal
Reference
Number

Description

2149577 Description: Fixed the issue where openibd script load used to fail when esp6_offload
module did not load successfully.

Keywords: openibd, esp6_offload

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2163879 Description: Added dependency of package mpi-selectors on perl-Getopt-Long system
package. On minimal installs of RPM-based OSs, installing mpi-selectors will also
install the required system package perl-Getopt-Long.

Keywords: Dependency, perl-Getopt-Long

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2119017 Description: Fixed the issue where injecting EEH may cause extra Kernel prints, such
as: “EEH: Might be infinite loop in mlx5_core driver”.

Keywords: EEH, kernel

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2107532 Description: Fixed the issue where in certain rare scenarios, due to Rx page not being
replenished, the same page fragment mistakenly became assigned to two different Rx
descriptors.

Keywords: Memory corruption, Rx page recycle

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-2.1.8.0

2116234 Description: Fixed the issue where ibsim was missing after OFED installation.

Keywords: ibsim, installation

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2116233 Description: Fixed an issue where ucx-kmem was missing after OFED installation.

Keywords: ucx-kmem, installation

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2109716 Description: Fixed a dependency issue between systemd and RDMA-Core.

Keywords: Dependency, RDMA-Core

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2107776 Description: Fixed a driver load issue with Errata-kernel on SLES15 SP1.

41

Internal
Reference
Number

Description

Keywords: Load, SLES, Errata

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2105536 Description: Fixed an issue in the Hairpin feature which prevented adding hairpin flows
using TC tool.

Keywords: Hairpin, TC

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2090321 Description: Fixed the issue where WQ queue flushing was not handled properly in the
event of EEH.

Keywords: WQ, EEH

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-2.1.8.0

2076311 Description: Fixed a rare kernel crash scenario when exiting an application that uses
RMPP mads intensively.

Keywords: MAD RMPP

Discovered in Release: 4.0-1.0.1.0

Fixed in Release: 5.0-2.1.8.0

2094545 Description: Fixed the issue where perftest applications (ib_read_*, ib_write_* and
others) supplied with MLNX_OFED v5.0 and above did not work correctly if
corresponding applications on another side of client-server communication were
supplied with previous versions of MLNX_OFED due to an interoperability issue.

Keywords: perftest, interoperability

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2096998 Description: Fixed the issue where NEO-Host could not be installed from the
MLNX_OFED package when working on Ubuntu and Debian OSs.

Keywords: NEO-Host, Ubuntu, Debian

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2094012 Description: Fixed the issue where MLNX_OFED installation failed to upgrade firmware
version on ConnectX-6 Dx NICs with secure-fw.

Keywords: ConnectX-6 Dx, installation, firmware, NIC

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

42

Internal
Reference
Number

Description

2057076 Description: Added support for installing MLNX_OFED using --add-kernel-support
option over RHEL 8 OSs.

Keywords: --add-kernel-support, installation, RHEL

Discovered in Release: 5.0-1.0.0.0

Fixed in Release: 5.0-2.1.8.0

2090186 Description: Fixed a possible kernel crash scenario when AER/slot reset in done in
parallel to user space commands execution.

Keywords: mlx5_core, AER, slot reset

Discovered in Release: 4.3-1.0.1.0

Fixed in Release: 5.0-2.1.8.0

2093410 Description: Added missing ECN configuration under sysfs for PFs in SwitchDev mode.

Keywords: sysfs, ASAP, SwitchDev, ECN

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-2.1.8.0

1731005 Description: Fixed the issue where MLNX_OFED v4.6 YUM and Zypper installations failed
on RHEL8.0, SLES15.0 and PPCLE OSs.

Keywords: YUM, Zypper, installation, RHEL, RedHat, SLES, PPCLE

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

1779150 Description: Fixed the issue of when upgrading the MLNX_OFED version over SLES 15
SP0 and SP1 OSs on PPCLE platforms, it might have failed due to an isert-kmp-default
issue.

Keywords: Installation, SLES, PPCLE

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

1897199 Description: Fixed the issue of when using the RDMA statistics feature and attempting to
unbind a QP from a counter, not including the counter-id as an argument in the CLI
would have resulted in a segmentation fault.

Keywords: RDMA, QP, segfault, unbinding

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

1916029 Description: Fixed the issue of when firmware response time to commands became very
long, some commands failed upon timeout. The driver may have then triggered a
timeout completion on the wrong entry, leading to a NULL pointer call trace.

Keywords: Firmware, timeout, NULL

Discovered in Release: 4.7-3.2.9.0

43

Internal
Reference
Number

Description

Fixed in Release: 5.0-1.0.0.0

2036394 Description: Added driver support for kernels with the old XDP_REDIRECT
infrastructure that uses the following NetDev operations: .ndo_xdp_flush
and .ndo_xdp_xmit.

Keywords: XDP_REDIRECT, Soft lockup

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

1973238 Description: Fixed the issue where ib_core unload may fail on Ubuntu 18.04.2 OS with
the following error message:

"Module ib_core is in use"

Keywords: ib_core, Ubuntu, ibacm

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.1-0.6.6.0

2072871 Description: Fixed an issue where the usage of --excludedocs Open MPI RPM option
resulted in the removal of non-documentation related files.

Keywords: --excludedocs, Open MPI, RPM

Discovered in Release: 4.5-1.0.1.0

Fixed in Release: 5.0-1.0.0.0

2060216 Description: Legacy mlnx-libs are now installed by default on SLES11 SP3 OS, as
building MLNX_OFED on RDMA-Core based packages with this OS is not supported.

Keywords: mlnx-libs, SLES, RDMA-Core

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

2072884 Description: Removed all cases of automated loading of MLNX_OFED kernel modules
outside of openibd to preserve the startup process of previous MLNX_OFED versions.
These loads conflict with openibd, which has its own logic to overcome issues. Such
issues can be inbox driver load instead of MLNX_OFED, or module load with wrong
parameter value. They might also load modules while openibd is trying to unload the
driver stack.

Keywords: Installation, openibd, RDMA-Core

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

2052037 Description: Disabled automated loading of some modules through udev triggers to
preserve the startup process of previous MLNX_OFED versions.

Keywords: Installation, udev, RDMA-Core

Discovered in Release: 4.7-3.2.9.0

44

Internal
Reference
Number

Description

Fixed in Release: 5.0-1.0.0.0

2022634 Description: Fixed a typo in the packages build command line which could cause the
installation of MLNX_OFED on SLES OSs to fail when using the option --without-
depcheck.

Keywords: Installation, SLES

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

2022619 Description: Fixed the issue where uninstallation of MLNX_OFED would hang due to a
bug in the package dependency check.

Keywords: Uninstallation, dependency

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

1995843 Description: ibdump is now provided with the default rdma-core-based build.

Keywords: ibdump, RDMA-Core

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

1995631 Description: Proper package dependencies are now set on Debian and Ubuntu
libibverbs-dev package that is generated from RDMA-Core.

Keywords: Dependency, libibverbs, RDMA-Core

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

2047221 Description: Reference count (refcount) for RDMA connection ID (cm_id) was not
incremented in rdma_resolve_addr() function, resulting in a cm_id use-after-free
access.
A fix was applied to increment the cm_id refcount.

Keywords: rdma_resolve_addr(), cm_id

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

2045181 Description: Fixed a race condition which caused kernel panic when moving two ports to
SwitchDev mode at the same time.

Keywords: ASAP, SwitchDev, race

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

2004488 Description: Allowed accessing sysfs hardware counters in SwitchDev mode.

Keywords: ASAP, hardware counters, sysfs, SwitchDev

45

Internal
Reference
Number

Description

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

2030943 Description: Function smp_processor_id() is called in the RX page recycle flow to
determine the core to run on. This is intended to run in NAPI context. However, due to a
bug in backporting, the RX page recycle was mistakenly called also in the RQ close flow
when not needed.

Keywords: Rx page recycle, smp_processor_id

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

2074487 Description: Fixed an issue where port link state was automatically changed (without
admin state involvement) to "UP" after reboot.

Keywords: Link state, UP

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

2064711 Description: Fixed an issue where RDMA CM connection failed when port space was
small.

Keywords: RDMA CM

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

2076424 Description: Traffic mirroring with OVS offload and non-offload over VxLAN interface is
now supported.

Note: For kernel 4.9, make sure to use a dedicated OVS version.

Keywords: VxLAN, OVS

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

1828321 Description: Fixed the issue of when working with VF LAG while the bond device is in
active-active mode, running fwreset would result in unequal traffic on both PFs, and PFs
would not reach line rate.

Keywords: VF LAG, bonding, PF

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

1975293 Description: Installing OFED with --with-openvswitch flag no longer requires manual
removal of the existing Open vSwitch.

Keywords: OVS, Open vSwitch, openvswitch

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

46

Internal
Reference
Number

Description

1939719 Description: Fixed an issue of when running openibd restart after the installation of
MLNX_OFED on SLES12 SP5 and SLES15 SP1 OSs with the latest Kernel (v4.12.14)
resulted in an error that the modules did not belong to that Kernel. This was due to the
fact that the module installed by MLNX_OFED was incompatible with new Kernel's
module.

Keywords: SLES, operating system, OS, installation, Kernel, module

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

2001966 Description: Fixed an issue of when bond was created over VF netdevices in SwitchDev
mode, the VF netdevice would be treated as representor netdevice. This caused the
mlx5_core driver to crash in case it received netdevice events related to bond device.

Keywords: PF, VF, SwitchDev, netdevice, bonding

Discovered in Release: 4.7-3.2.9.0

Fixed in Release: 5.0-1.0.0.0

1816629 Description: Fixed an issue where following a bad affinity occurrence in VF LAG mode,
traffic was sent after the port went up/down in the switch.

Keywords: Traffic, VF LAG

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

1718531 Description: Added support for VLAN header rewrite on CentOS 7.2 OS.

Keywords: VLAN, ASAP, switchdev, CentOS 7.2

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 5.0-1.0.0.0

1556337 Description: Fixed the issue where adding VxLAN decapsulation rule with enc_tos and
enc_ttl failed.

Keywords: VxLAN, decapsulation

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 5.0-1.0.0.0

1921799 Description: Fixed the issue where MLNX_OFED installation over SLES15 SP1 ARM OSs
failed unless --add-kernel-support flag was added to the installation command.

Keywords: SLES, installation

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 4.7-3.2.9.0

1949260 Description: Fixed a race condition that resulted in kernel panic when running IPoIB
traffic in Connected mode.

Keywords: IPoIB

Discovered in Release: 4.5-1.0.1.0

47

Internal
Reference
Number

Description

Fixed in Release: 4.7-3.2.9.0

1973828 Description: Fixed wrong EEPROM length for small form factor (SFF) 8472 from 256 to
512 bytes.

Keywords: EEPROM, SFF

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 4.7-3.2.9.0

1915553 Description: Fixed the issue where errno field was not sent in all error flows of
ibv_reg_mr API.

Keywords: ibv_reg_mr

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-3.2.9.0

1970901 Description: Fixed the issue where mlx5 IRQ name did not change to express the state of
the interface.

Keywords: Ethernet, PCIe, IRQ

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 4.7-3.2.9.0

1915587 Description: Udaddy application is now functional in Legacy mode.

Keywords: Udaddy, MLNX_OFED legacy, RDMA-CM

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 4.7-3.2.9.0

1931421 Description: Added support for E-Switch (SR-IOV Legacy) mode in RHEL 7.7 OSs.

Keywords: E-Switch, SR-IOV, RHEL, RedHat

Discovered in Release: 4.7-1.0.0.1

Fixed in Release: 4.7-3.2.9.0

1945411/1839353 Description: Fixed the issue of when XDP_REDIRECT fails, pages got double-freed due
to a bug in the refcnt_bias feature.

Keywords: XDP, XDP_REDIRECT, refcnt_bias

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-3.2.9.0

1715789 Description: Fixed the issue where Mellanox Firmware Tools (MFT) package was
missing from Ubuntu v18.04.2 OS.

Keywords: MFT, Ubuntu, operating system

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-1.0.0.1

1547200 Description: Fixed an issue where IPoIB Tx queue may get stuck, leading to timeout
warnings in dmesg.

Keywords: IPoIB

48

Internal
Reference
Number

Description

Discovered in Release: 4.5-1.0.1.0

Fixed in Release: 4.7-1.0.0.1

1817636 Description: Fixed the issue of when disabling one port on the Server side, VF-LAG Tx
Affinity would not work on the Client side.

Keywords: VF-LAG, Tx Affinity

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-1.0.0.1

1800525 Description: When configuring the Time-stamping feature, CQE compression will be
disabled. This fix entails the removal of a warning message that appeared upon
attempting to disable CQE compression when it has already been disabled.

Keywords: Time-stamping, CQE compression

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-1.0.0.1

1431282 Description: Fixed the issue where software reset may have resulted in an order
inversion of interface names.

Keywords: Software reset

Discovered in Release: 4.4-1.0.0.0

Fixed in Release: 4.7-1.0.0.1

1843020 Description: Server reboot may result in a system crash.

Keywords: reboot, crash

Discovered in Release: 4.2-1.2.0.0

Fixed in Release: 4.7-1.0.0.1

1734102 Description: Fixed the issue where Ubuntu v16.04.05 and v16.04.05 OSs could not be
used with their native kernels.

Keywords: Ubuntu, Kernel, OS

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-1.0.0.1

1811973 Description: VF mirroring offload is now supported.

Keywords: ASAP2, VF mirroring

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-1.0.0.1

1841634 Description: The number of guaranteed counters per VF is now calculated based on the
number of ports mapped to that VF. This allows more VFs to have counters allocated.

Keywords: Counters, VF

Discovered in Release: 4.4-1.0.0.0

Fixed in Release: 4.7-1.0.0.1

49

Internal
Reference
Number

Description

1758983 Description: Installing MLNX_OFED on RHEL 7.6 OSs platform x86_64 and RHEL 7.6 ALT
OSs platform PPCLE using YUM is now supported.

Keywords: RHEL, RedHat, YUM, OS, operating system

Discovered in Release: 4.6-1.0.1.1

Fixed in Release: 4.7-1.0.0.1

1523548 Description: Fixed the issue where RDMA connection persisted even after dropping the
network interface.

Keywords: Network interface, RDMA

Discovered in Release: 4.4-1.0.0.0

Fixed in Release: 4.6-1.0.1.1

1712870 Description: Fixed the issue where small packets with non-zero padding were wrongly
reported as "checksum complete" even though the padding was not covered by the csum
calculation. These packets now report "checksum unnecessary".

In addition, an ethtool private flag has been introduced to control the "checksum
complete" feature: ethtool --set-priv-flags eth1 rx_no_csum_complete on/off

Keywords: csum error, checksum, mlx5_core

Discovered in Release: 4.5-1.0.1.0

Fixed in Release: 4.6-1.0.1.1

1648597 Description: Fixed the wrong wording in the FW tracer ownership startup message
(from "FW Tracer Owner" to "FWTracer: Ownership granted and active").

Keywords: FW Tracer

Discovered in Release: 4.5-1.0.1.0

Fixed in Release: 4.6-1.0.1.1

1581631 Description: Fixed the issue where GID entries referenced to by a certain user
application could not be deleted while that user application was running.

Keywords: RoCE, GID

Discovered in Release: 4.5-1.0.1.0

Fixed in Release: 4.6-1.0.1.1

1368390 Description: Fixed the issue where MLNX_OFED could not be installed on RHEL 7.x Alt
OSs using YUM repository.

Keywords: Installation, YUM, RHEL

Discovered in Release: 4.3-3.0.2.1

Fixed in Release: 4.6-1.0.1.1

1531817 Description: Fixed an issue of when the number of channels configured was less than
the number of CPUs available, part of the CPUs would not be used by Tx queues.

Keywords: Performance, Tx, CPU

Discovered in Release: 4.4-1.0.0.0

50

Internal
Reference
Number

Description

Fixed in Release: 4.5-1.0.1.0

1571977 Description: Fixed an issue of when the same CQ is connected to some QPs with SRQ
and some without, wrong wr_id might be reported by ibv_poll_cq .

Keywords: libmlx5, wr_id

Discovered in Release: 4.4-1.0.0.0

Fixed in Release: 4.5-1.0.1.0

1380135 Description: Fixed the issue where IB port link used to flap due to MAD heartbeat
response delay when using new CQ API.

Keywords: IB port link, CQ API, MAD heartbeat

Discovered in Release: 4.2-1.2.0.0

Fixed in Release: 4.5-1.0.1.0

1498931 Description: Fixed the issue where establishing TCP connection took too long due to
failure of SA PathRecord query callback handler.

Keywords: TCP, SA PathRecord

Discovered in Release: 4.4-1.0.0.0

Fixed in Release: 4.5-1.0.1.0

1514096 Description: Fixed the issue where lack of high order allocations caused driver load
failure. All high order allocations are now changed to order-0 allocations.

Keywords: mlx5, high order allocation

Discovered in Release: 4.0-2.0.2.0

Fixed in Release: 4.5-1.0.1.0

1524932 Description: Fixed a backport issue on some OSs, such as RHEL v7.x, where mlx5 driver
would support ip link set DEVICE vf NUM rate TXRATE old command, instead of ip link
set DEVICE vf NUM max_tx_rate TXRATE min_tx_rate TXRATE new command.

Keywords: mlx5 driver

Discovered in Release: 4.0-2.0.2.0

Fixed in Release: 4.5-1.0.1.0

1498585 Description: Fixed the issue of when performing configuration changes, mlx5e counters
values were reset.

Keywords: Ethernet counters

51

Internal
Reference
Number

Description

Discovered in Release: 4.0-2.0.2.0

Fixed in Release: 4.5-1.0.1.0

1425027 Description: Fixed the issue where attempting to establish a RoCE connection on the
default GID or on IPv6 link-local address might have failed when two or more netdevices
that belong to HCA ports were slaves under a bonding master.

This might also have resulted in the following error message in the kernel log: “ __ib_ca
che_gid_add: unable to add gid fe80:0000:0000:0000:f652:14ff:fe46:7391 error=-28 ”.

Keywords: RoCE, bonding

Discovered in Release: 4.4-1.0.0.0

Fixed in Release: 4.5-1.0.1.0

52

•
•

•

•
•

•

•

•

•

•

•
•

1.

2.

•

•

•

Introduction
This manual is intended for system administrators responsible for the installation, configuration,
management and maintenance of the software and hardware of VPI (InfiniBand, Ethernet) adapter
cards. It is also intended for application developers.
Mellanox OFED is a single Virtual Protocol Interconnect (VPI) software stack which operates across all
Mellanox network adapter solutions supporting the following uplinks to servers:

Uplink/NICs Driver Name Uplink Speed

ConnectX®-4 mlx5 InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GigE, 10GigE, 25GigE, 40GigE,
50GigE, 56GigE1, and 100GigE

ConnectX®-4 Lx Ethernet: 1GigE, 10GigE, 25GigE, 40GigE, and
50GigE

ConnectX®-5/ConnectX®-5 Ex InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GigE, 10GigE, 25GigE, 40GigE,
50GigE, and 100GigE

ConnectX®-6 InfiniBand - SDR, EDR, HDR

Ethernet - 10GbE, 25GbE, 40GbE, 50GbE2,

100GbE2, 200GbE2

ConnectX®-6 Dx Ethernet - 10GbE, 25GbE, 40GbE, 50GbE2,

100GbE2, 200GbE2

ConnectX®-6 Lx Ethernet - 1GigE, 10GigE, 25GigE, 40GigE,
50GigE2

Innova™ IPsec EN Ethernet: 10GigE, 40GigE

BlueField® InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GigE, 10GigE, 25GigE, 40GigE,
50GigE, and 100GigE

56 GbE is a Mellanox propriety link speed and can be achieved while connecting a Mellanox
adapter card to
Mellanox SX10XX switch series, or connecting a Mellanox adapter card to another Mellanox
adapter card.
Supports both NRZ and PAM4 modes.

All Mellanox network adapter cards are compatible with OpenFabrics-based RDMA protocols and
software and are supported by major operating system distributions.
Mellanox OFED is certified with the following products:

Mellanox Messaging Accelerator (VMA™) software: Socket acceleration library that performs OS
bypass for standard socket-based applications.
Please note, VMA support is provided separately from Mellanox OFED support. For further
information, please refer to the VMA documentation (https://docs.mellanox.com/category/vma).
Mellanox Unified Fabric Manager (UFM®) software: Powerful platform for managing demanding
scale-out computing fabric environments, built on top of the OpenSM industry standard routing
engine.
Fabric Collective Accelerator (FCA) - FCA is a Mellanox MPI-integrated software package that
utilizes CORE-Direct technology for implementing the MPI collectives communications.

https://docs.mellanox.com/category/vma

53

Stack Architecture
The figure below shows a diagram of the Mellanox OFED stack, and how upper layer protocols (ULPs)
interface with the hardware and with the kernel and userspace. The application level also shows the
versatility of markets that Mellanox OFED applies to.

The following subsections briefly describe the various components of the Mellanox OFED stack.
mlx4 VPI Driver

mlx5 Driver
mlx5 is the low-level driver implementation for the Connect-IB® and ConnectX®-4 and above adapters
designed by Mellanox Technologies. ConnectX®-4 and above adapter cards operate as a VPI adapter
(Infiniband and Ethernet). The mlx5 driver is comprised of the following kernel modules:

mlx5_core
Acts as a library of common functions (e.g. initializing the device after reset) required by ConnectX®-4
and above adapter cards. mlx5_core driver also implements the Ethernet interfaces for ConnectX®-4
and above. mlx5 drivers do not require the mlx5_en module as the Ethernet functionalities are built-in
in the mlx5_core module.
mlx5_ib
Handles InfiniBand-specific functions and plugs into the InfiniBand mid layer.
libmlx5

This driver is no longer supported in MLNX_OFED. To work with ConnectX-3 and ConnectX-3
Pro NICs, please refer to MLNX_OFED LTS version available on the web.

Please note that Connect-IB card is no longer supported in MLNX_OFED. To work with this
card, please refer to MLNX_OFED LTS version available on the web.

54

•
•

•
•

•
•
•

•
•

•
•
•
•

•
•
•

•
•

•

•
•

•
•

libmlx5 is the provider library that implements hardware specific user-space functionality. If there is no
compatibility between the firmware and the driver, the driver will not load and a message will be
printed in the dmesg.
The following are the libmlx5 Legacy and RDMA-Core environment variables:

MLX5_FREEZE_ON_ERROR_CQE
Causes the process to hang in a loop of completion with error, which is not flushed with
error or retry exceeded occurs/
Otherwise disabled

MLX5_POST_SEND_PREFER_BF
Configures every work request that can use blue flame will use blue flame

Otherwise - blue flame depends on the size of the message and inline indication in the packet
MLX5_SHUT_UP_BF

Disables blue flame feature
Otherwise - do not disable

MLX5_SINGLE_THREADED
All spinlocks are disabled
Otherwise - spinlocks enabled
Used by applications that are single threaded and would like to save the overhead of
taking spinlocks.

MLX5_CQE_SIZE
64 - completion queue entry size is 64 bytes (default)
128 - completion queue entry size is 128 bytes

MLX5_SCATTER_TO_CQE
Small buffers are scattered to the completion queue entry and manipulated by the driver.
Valid for RC transport.
Default is 1, otherwise disabled

The following are libmlx5 Legacy only environment variables:
MLX5_ENABLE_CQE_COMPRESSION

Saves PCIe bandwidth by compressing a few CQEs into a smaller amount of bytes on
PCIe. Setting this variable enables CQE compression.
Default value 0 (disabled)

MLX5_RELAXED_PACKET_ORDERING_ON
See “Out-of-Order (OOO) Data Placement” section.

Mid-layer Core
Core services include management interface (MAD), connection manager (CM) interface, and Subnet
Administrator (SA) interface. The stack includes components for both user-mode and kernel
applications. The core services run in the kernel and expose an interface to user-mode for verbs, CM
and management.
Upper Layer Protocols (ULPs)
IP over IB (IPoIB)
The IP over IB (IPoIB) driver is a network interface implementation over InfiniBand. IPoIB encapsulates
IP datagrams over an InfiniBand connected or datagram transport service. IPoIB pre-appends the IP
datagrams with an encapsulation header and sends the outcome over the InfiniBand transport service.
The transport service is Unreliable Datagram (UD) by default, but it may also be configured to be
Reliable Connected (RC), in case RC is supported. The interface supports unicast, multicast and
broadcast. For details, see “IP over InfiniBand (IPoIB)” section.
iSCSI Extensions for RDMA (iSER)
iSCSI Extensions for RDMA (iSER) extends the iSCSI protocol to RDMA. It permits data to be
transferred directly into and out of SCSI buffers without intermediate data copies. For further
information, please refer to “iSCSI Extensions for RDMA (iSER)” section.
SCSI RDMA Protocol (SRP)
SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol offload and RDMA
features provided by the InfiniBand architecture. SRP allows a large body of SCSI software to be readily
used on InfiniBand architecture. The SRP driver—known as the SRP Initiator—differs from traditional

55

•

•
•

•
•

•
•

•
•

•
•

low-level SCSI drivers in Linux. The SRP Initiator does not control a local HBA; instead, it controls a
connection to an I/O controller—known as the SRP Target—to provide access to remote storage
devices across an InfiniBand fabric. The SRP Target resides in an I/O unit and provides storage
services. See “SRP - SCSI RDMA Protocol” section.
User Direct Access Programming Library (uDAPL)
User Direct Access Programming Library (uDAPL) is a standard API that promotes data center
application data messaging performance, scalability, and reliability over RDMA interconnects
InfiniBand and RoCE. The uDAPL interface is defined by the DAT collaborative. This release of the
uDAPL reference implementation package for both DAT 1.2 and 2.0 specification is timed to coincide
with OFED release of the Open Fabrics (www.openfabrics.org) software stack.
MPI
Message Passing Interface (MPI) is a library specification that enables the development of parallel
software libraries to utilize parallel computers, clusters, and heterogeneous networks. Mellanox OFED
includes the following MPI implementation over InfiniBand:

Open MPI – an open source MPI-2 implementation by the Open MPI Project

Mellanox OFED also includes MPI benchmark tests such as OSU BW/LAT, Intel MPI BeBenchmarkand
Presta.
InfiniBand Subnet Manager
All InfiniBand-compliant ULPs require a proper operation of a Subnet Manager (SM) running on the
InfiniBand fabric, at all times. An SM can run on any node or on an IB switch. OpenSM is an InfiniBand-
compliant Subnet Manager, and it is installed as part of Mellanox OFED1.
1. OpenSM is disabled by default. See “OpenSM” section for details on enabling it.
Diagnostic Utilities
Mellanox OFED includes the following two diagnostic packages for use by network and data center
managers:

ibutils – Mellanox Technologies diagnostic utilities
infiniband-diags – OpenFabrics Alliance InfiniBand diagnostic tools

Mellanox Firmware Tools
The Mellanox Firmware Tools (MFT) package is a set of firmware management tools for a single
InfiniBand node. MFT can be used for:

Generating a standard or customized Mellanox firmware image
Burning a firmware image to a single InfiniBand node

MFT includes a set of tools used for performing firmware update and configuration, as well as debug
and diagnostics, and provides MST service. For the full list of available tools within MFT, please refer to
MFT documentation (https://docs.mellanox.com/category/mft).

Mellanox OFED Package

ISO Image
Mellanox OFED for Linux (MLNX_OFED_LINUX) is provided as ISO images or as a tarball, one per
supported Linux distribution and CPU architecture, that includes source code and binary RPMs,
firmware, utilities, and documentation. The ISO image contains an installation script (called
mlnxofedinstall) that performs the necessary steps to accomplish the following:

Discover the currently installed kernel
Uninstall any InfiniBand stacks that are part of the standard operating system distribution or
another vendor's commercial stack
Install the MLNX_OFED_LINUX binary RPMs (if they are available for the current kernel)
Identify the currently installed InfiniBand HCAs and perform the required firmware updates

Software Components
MLNX_OFED_LINUX contains the following software components:

Mellanox Host Channel Adapter Drivers
mlx5

http://www.openfabrics.org
https://docs.mellanox.com/category/mft

56

•
•

•
•

•
•

•
•
•

•
•

•
•
•

•
•

•

•

•
•
•
•

•

•

•

•
•
•

mlx5_ib
mlx5_core (includes Ethernet)

Mid-layer core
Verbs, MADs, SA, CM, CMA, uVerbs, uMADs

Upper Layer Protocols (ULPs)
IPoIB, SRP Initiator and SRP

MPI
Open MPI stack supporting the InfiniBand, RoCE and Ethernet interfaces
MPI benchmark tests (OSU BW/LAT, Intel MPI Benchmark, Presta)

OpenSM: InfiniBand Subnet Manager
Utilities

Diagnostic tools
Performance tests
Sysinfo (see Sysinfo User Manual)

Firmware tools (MFT)
Source code for all the OFED software modules (for use under the conditions mentioned
in the modules' LICENSE files)
Documentation

Firmware
The ISO image includes the following firmware item:

mlnx-fw-updater RPM/DEB package, which contains firmware binaries for supported devices
(using mlxfwmanager tool).

Directory Structure
The ISO image of MLNX_OFED_LINUX contains the following files and directories:

mlnxofedinstall - This is the MLNX_OFED_LINUX installation script.
ofed_uninstall.sh - This is the MLNX_OFED_LINUX un-installation script.
<RPMS folders> - Directory of binary RPMs for a specific CPU architecture.
src/ - Directory of the OFED source tarball.

mlnx_add_kernel_support.sh - Script required to rebuild MLNX_OFED_LINUX for customized
kernel version on supported Linux Distribution
RPM based - A script required to rebuild MLNX_OFED_LINUX for customized kernel version on
supported RPM-based Linux Distribution
docs/ - Directory of Mellanox OFED related documentation

Module Parameters
mlx5_core Module Parameters
The mlx5_core module supports a single parameter used to select the profile which defines the
number of resources supported.
prof_sel The parameter name for selecting the profile. The supported values

for profiles are:

0 - for medium resources, medium performance
1 - for low resources
2 - for high performance (int) (default)

guids charp

MLNX_OFED includes the OFED source RPM packages used as a build platform for kernel
code but does not include the sources of Mellanox proprietary packages.

https://mellanox.my.salesforce.com/sfc/p/#500000007heg/a/1T000000cB8M/1Rp3toGIlelVVcfOMJD.OpM10A0ff2zz1LHOC.3OjFI

57

node_guid guids configuration. This module parameter will be obsolete!

debug_mask debug_mask: 1 = dump cmd data, 2 = dump cmd exec time, 3 = both.
Default=0 (uint)

probe_vf probe VFs or not, 0 = not probe, 1 = probe. Default = 1 (bool)

num_of_groups Controls the number of large groups in the FDB flow table.

Default=4; Range=1-1024

ib_core Parameters
send_queue_size Size of send queue in number of work requests (int)

recv_queue_size Size of receive queue in number of work requests (int)

force_mr Force usage of MRs for RDMA READ/WRITE operations (bool)

roce_v1_noncompat_gid Default GID auto configuration (Default: yes) (bool)

ib_ipoib Parameters
max_nonsrq_conn_qp Max number of connected-mode QPs per interface (applied only if

shared receive queue is not available) (int)

mcast_debug_level Enable multicast debug tracing if > 0 (int)

send_queue_size Number of descriptors in send queue (int)

recv_queue_size Number of descriptors in receive queue (int)

debug_level Enable debug tracing if > 0 (int)

ipoib_enhanced Enable IPoIB enhanced for capable devices (default = 1) (0-1) (int)

Device Capabilities
Normally, an application needs to query the device capabilities before attempting to create a resource.
It is essential for the application to be able to operate over different devices with different capabilities.
Specifically, when creating a QP, the user needs to specify the maximum number of outstanding work
requests that the QP supports. This value should not exceed the queried capabilities. However, even
when you specify a number that does not exceed the queried capability, the verbs can still fail since
some other factors such as the number of scatter/gather entries requested, or the size of the inline
data required, affect the maximum possible work requests. Hence an application should try to
decrease this size (halving is a good new value) and retry until it succeeds.

58

•
•
•
•
•
•
•

Installation
This chapter describes how to install and test the Mellanox OFED for Linux package on a single host
machine with Mellanox InfiniBand and/or Ethernet adapter hardware installed.
The chapter contains the following sections:

Hardware and Software Requirements
Downloading Mellanox OFED
Installing Mellanox OFED
Uninstalling Mellanox OFED
Updating Firmware After Installation
UEFI Secure Boot
Performance Tuning

Hardware and Software Requirements
Requirements Description

Platforms A server platform with an adapter card based on one of the
following Mellanox Technologies’ VPI HCA devices listed in
Supported NICs Speeds table.

For the list of supported architecture platforms, please refer to
the Mellanox OFED Release Notes file.

Required Disk Space for
Installation

1GB

Device ID For the latest list of device IDs, please visit Mellanox website.

Operating System Linux operating system.

For the list of supported operating system distributions and
kernels, please refer to the Mellanox OFED Release Notes file.

Installer
Privileges

The installation requires administrator (root) privileges on the
target machine.

Downloading Mellanox OFED
1. Verify that the system has a Mellanox network adapter (HCA/NIC) installed.

The following example shows a system with an installed Mellanox HCA:

lspci -v | grep Mellanox
86:00.0 Network controller [0207]: Mellanox Technologies MT27620 Family
 Subsystem: Mellanox Technologies Device 0014
86:00.1 Network controller [0207]: Mellanox Technologies MT27620 Family
 Subsystem: Mellanox Technologies Device 0014

Note: For ConnectX-5 Socket Direct adapters, use ibdev2netdev to display the installed card and
the mapping of logical ports to physical ports. Example:

59

•

•

a.
b.
c.
d.

•
•

•
•

[root@gen-l-vrt-203 ~]# ibdev2netdev -v | grep -i MCX556M-ECAT-S25
0000:84:00.0 mlx5_10 (MT4119 - MCX556M-ECAT-S25SN) CX556M - ConnectX-5 QSFP28 fw
16.22.0228 port 1 (DOWN) ==> p2p1 (Down)
0000:84:00.1 mlx5_11 (MT4119 - MCX556M-ECAT-S25SN) CX556M - ConnectX-5 QSFP28 fw
16.22.0228 port 1 (DOWN) ==> p2p2 (Down)
0000:05:00.0 mlx5_2 (MT4119 - MCX556M-ECAT-S25SN) CX556M - ConnectX-5 QSFP28 fw
16.22.0228 port 1 (DOWN) ==> p5p1 (Down)
0000:05:00.1 mlx5_3 (MT4119 - MCX556M-ECAT-S25SN) CX556M - ConnectX-5 QSFP28 fw
16.22.0228 port 1 (DOWN) ==> p5p2 (Down)

Notes:
Each PCI card of ConnectX-5 Socket Direct has a different PCI address. In the output example
above, the first two rows indicate that one card is installed in a PCI slot with PCI Bus address 84
(hexadecimal), and PCI Device Number 00, and PCI Function Number 0 and 1. RoCE assigned
mlx5_10 as the logical port, which is the same as netdevice p2p1, and both are mapped to
physical port of PCI function 0000:84:00.0.
RoCE logical port mlx5_2 of the second PCI card (PCI Bus address 05) and netdevice p5p1 are
mapped to physical port of PCI function 0000:05:00.0, which is the same physical port of PCI
function 0000:84:00.0.
MT4119 is the PCI Device ID of the Mellanox ConnectX-5 adapters family.

For more details, please refer to ConnectX-5 Socket Direct Hardware User Manual, available at w
ww.mellanox.com.
2. Download the ISO image to your host.
The image’s name has the format MLNX_OFED_LINUX-<ver>-<OS label><CPU arch>.iso. You can
download it from http://www.mellanox.com --> Products --> Software --> InfiniBand/VPI Drivers
--> Mellanox OFED Linux (MLNX_OFED).

Scroll down to the Download wizard, and click the Download tab.
Choose your relevant package depending on your host operating system.
Click the desired ISO/tgz package.
To obtain the download link, accept the End User License Agreement (EULA).

3. Use the md5sum utility to confirm the file integrity of your ISO image. Run the following
command and compare the result to the value provided on the download page.

host1$ md5sum MLNX_OFED_LINUX-<ver>-<OS label>.iso

Installing Mellanox OFED

Installation Script
The installation script, mlnxofedinstall, performs the following:

Discovers the currently installed kernel
Uninstalls any software stacks that are part of the standard operating system distribution or
another vendor's commercial stack
Installs the MLNX_OFED_LINUX binary RPMs (if they are available for the current kernel)
Identifies the currently installed InfiniBand and Ethernet network adapters and automatically
upgrades the firmware
Note: If you wish to perform a firmware upgrade using customized FW binaries, you can provide
a path to the folder that contains the FW binary files, by running --fw-image-dir. Using this
option, the FW version embedded in the MLNX_OFED package will be ignored.
Example:

http://www.mellanox.com/
http://www.mellanox.com/
http://www.mellanox.com/

60

•

•

./mlnxofedinstall --fw-image-dir /tmp/my_fw_bin_files

Usage

./mnt/mlnxofedinstall [OPTIONS]

The installation script removes all previously installed Mellanox OFED packages and re-installs from
scratch. You will be prompted to acknowledge the deletion of the old packages.

If you need to install Mellanox OFED on an entire (homogeneous) cluster, a common strategy is
to mount the ISO image on one of the cluster nodes and then copy it to a shared file system such
as NFS. To install on all the cluster nodes, use cluster-aware tools (suchaspdsh).
If your kernel version does not match with any of the offered pre-built RPMs, you can add your
kernel version by using the “mlnx_add_kernel_support.sh” script located inside the
MLNX_OFED package.

The “mlnx_add_kernel_support.sh” script can be executed directly from the mlnxofedinstall
script. For further information, please see '--add-kernel-support' option below.

If the driver detects unsupported cards on your system, it will abort the installation
procedure. To avoid this, make sure to add --skip-unsupported-devices-check flag
during installation.

Pre-existing configuration files will be saved with the extension “.conf.rpmsave”.

On Redhat and SLES distributions with errata kernel installed there is no need to use
the mlnx_add_kernel_support.sh script. The regular installation can be performed and
weak-updates mechanism will create symbolic links to the MLNX_OFED kernel
modules.

If you regenerate kernel modules for a custom kernel (using --add-kernel-support),
the packages installation will not involve automatic regeneration of the initramfs. In
some cases, such as a system with a root filesystem mounted over a ConnectX card,
not regenerating the initramfs may even cause the system to fail to reboot.

In such cases, the installer will recommend running the following command to update
the initramfs:

dracut -f

On some OSs, dracut -f might result in the following error message which can be
safely ignore.

libkmod: kmod_module_new_from_path: kmod_module 'mdev' already exists
with different path

61

•

•
•

•

1.
2.

3.

Example: The following command will create a MLNX_OFED_LINUX ISO image for RedHat 7.3
under the /tmp directory.

./MLNX_OFED_LINUX-x.x-x-rhel7.3-x86_64/mlnx_add_kernel_support.sh -m /
tmp/MLNX_OFED_LINUX-x.x-x-rhel7.3-x86_64/ --make-tgz
Note: This program will create MLNX_OFED_LINUX TGZ for rhel7.3 under /tmp
directory.
All Mellanox, OEM, OFED, or Distribution IB packages will be removed.
Do you want to continue?[y/N]:y
See log file /tmp/mlnx_ofed_iso.21642.log

Building OFED RPMs. Please wait...
Removing OFED RPMs...
Created /tmp/MLNX_OFED_LINUX-x.x-x-rhel7.3-x86_64-ext.tgz

The script adds the following lines to /etc/security/limits.conf for the userspace components
such as MPI:

* soft memlock unlimited
* hard memlock unlimited

These settings set the amount of memory that can be pinned by a userspace
application to unlimited. If desired, tune the value unlimited to a specific amount of
RAM.

 For your machine to be part of the InfiniBand/VPI fabric, a Subnet Manager must be running on one of
the fabric nodes. At this point, Mellanox OFED for Linux has already installed the OpenSM Subnet
Manager on your machine.
For the list of installation options, run: ./mlnxofedinstall --h

Installation Procedure
This section describes the installation procedure of MLNX_OFED on Mellanox adapter cards. Additional
installation procedures are provided for Mellanox Innova SmartNIC for other environment
customizations, and for extra libraries and packages in “Installing MLNX_OFED on Innova™ IPsec
Adapter Cards” section.

Log in to the installation machine as root.
Mount the ISO image on your machine.

host1# mount -o ro,loop MLNX_OFED_LINUX-<ver>-<OS label>-<CPU arch>.iso /
mnt

Run the installation script.

On Ubuntu and Debian distributions drivers installation use Dynamic Kernel Module
Support (DKMS) framework. Thus, the drivers' compilation will take place on the host
during MLNX_OFED installation.
Therefore, using "mlnx_add_kernel_support.sh" is irrelevant on Ubuntu and Debian
distributions.

The DKMS (on Debian based OS) and the weak-modules (RedHat OS) mechanisms rebuild the
initrd/initramfs for the respective kernel in order to add the MLNX_OFED drivers.
When installing MLNX_OFED without DKMS support on Debian based OS, or without KMP
support on RedHat or any other distribution, the initramfs will not be changed. Therefore, the
inbox drivers may be loaded on boot. In this case, openibd service script will automatically
unload them and load the new drivers that come with MLNX_OFED.

62

/mnt/mlnxofedinstall
Logs dir: /tmp/MLNX_OFED_LINUX-x.x-x.logs
This program will install the MLNX_OFED_LINUX package on your machine.
Note that all other Mellanox, OEM, OFED, RDMA or Distribution IB packages
will be removed.
Those packages are removed due to conflicts with MLNX_OFED_LINUX, do not
reinstall them.
Starting MLNX_OFED_LINUX-x.x.x installation ...
........
........
Installation finished successfully.
Attempting to perform Firmware update...
Querying Mellanox devices firmware ...

For unattended installation, use the --force installation option while running the
MLNX_OFED installation script:
/mnt/mlnxofedinstall --force

MLNX_OFED for Ubuntu should be installed with the following flags in chroot
environment:
./mlnxofedinstall --without-dkms --add-kernel-support --kernel <kernel version in
chroot> --without-fw-update --force
For example:
./mlnxofedinstall --without-dkms --add-kernel-support --kernel 3.13.0-85-generic --
without-fw-update --force
Note that the path to kernel sources (--kernel-sources) should be added if the sources
are not in their default location.

In case your machine has the latest firmware, no firmware update will occur and the
installation script will print at the end of installation a message similar to the following:
Device #1:

Device Type: ConnectX4
Part Number: MCX456A-ECA
Description: ConnectX-4 VPI adapter card; EDR IB (100Gb/s) and 100GbE; dual-port
QSFP28; PCIe3.0 x16; ROHS R6
PSID: MT_2190110032
PCI Device Name: 0b:00.0
Base MAC: 0000e41d2d5cf810
Versions: Current Available
FW 12.14.0114 12.14.0114
Status: Up to date

63

4.

5.

•
•
•
•
•

Case A: If the installation script has performed a firmware update on your network adapter, you
need to either restart the driver or reboot your system before the firmware update can take
effect. Refer to the table below to find the appropriate action for your specific card.

Action \ Adapter Driver Restart Standard Reboot
(Soft Reset)

Cold Reboot (Hard
Reset)

Standard ConnectX-4/
ConnectX-4 Lx or higher

- + -

Adapters with Multi-
Host Support

- - +

Socket Direct Cards - - +

Case B: If the installations script has not performed a firmware upgrade on your network
adapter, restart the driver by running: “/etc/init.d/openibd restart”.

(InfiniBand only) Run the hca_self_test.ofed utility to verify whether or not the InfiniBand link is
up. The utility also checks for and displays additional information such as:

HCA firmware version
Kernel architecture
Driver version
Number of active HCA ports along with their states
Node GUID
For more details on hca_self_test.ofed, see the file docs/readme_and_user_manual/
hca_self_test.readme.

After installation completion, information about the Mellanox OFED installation, such as prefix, kernel
version, and installation parameters can be retrieved by running the command /etc/infiniband/
info. Most of the Mellanox OFED components can be configured or reconfigured after the installation,
by modifying the relevant configuration files. See the relevant chapters in this manual for details.

In case your machine has an unsupported network adapter device, no firmware update
will occur and one of the error messages below will be printed. Please contact your
hardware vendor for help with firmware updates.

Error message #1:
Device #1:

Device Type: ConnectX4
Part Number: MCX456A-ECA
Description: ConnectX-4 VPI adapter card; EDR IB (100Gb/s) and 100GbE; dual-port
QSFP28; PCIe3.0 x16; ROHS R6
PSID: MT_2190110032
PCI Device Name: 0b:00.0
Base MAC: 0000e41d2d5cf810
Versions: Current Available
FW 12.14.0114 N/A
Status: No matching image found

Error message #2:
The firmware for this device is not distributed inside Mellanox driver: 0000:01:00.0
(PSID: IBM2150110033)
To obtain firmware for this device, please contact your HW vendor.

64

•

•
•

•
•

•

•

•

•

•

•

1.

2.

The list of the modules that will be loaded automatically upon boot can be found in the /etc/infiniband/
openib.conf file.

Installation Results
Software Most of MLNX_OFED packages are installed under the “/usr” directory

except for the following packages which are installed under the “/opt”
directory:

fca and ibutils
iproute2 (rdma tool) - installed under /opt/Mellanox/iproute2/
sbin/rdma

The kernel modules are installed under
/lib/modules/`uname -r`/updates on SLES and Fedora
Distributions
/lib/modules/`uname -r`/extra/mlnx-ofa_kernel on RHEL and
other RedHat like Distributions
/lib/modules/`uname -r`/updates/dkms/ on Ubuntu

Firmware The firmware of existing network adapter devices will be updated if the
following two conditions are fulfilled:

The installation script is run in default mode; that is, without
the option ‘--without- fw-update’
The firmware version of the adapter device is older than the
firmware version included with the Mellanox OFED ISO image
Note: If an adapter’s Flash was originally programmed with an
Expansion ROM image, the automatic firmware update will also
burn an Expansion ROM image.

In case your machine has an unsupported network adapter device, no
firmware update will occur and the error message below will be
printed.
"The firmware for this device is not distributed inside Mellanox driver:
0000:01:00.0 (PSID: IBM2150110033)
To obtain firmware for this device, please contact your HW vendor."

Installation Logging
While installing MLNX_OFED, the install log for each selected package will be saved in a separate log
file.
The path to the directory containing the log files will be displayed after running the installation script in
the following format:
Example:

Logs dir: /tmp/MLNX_OFED_LINUX-4.4-1.0.0.0.IBMM2150110033.logs

Driver Load Upon System Boot
Upon system boot, the Mellanox drivers will be loaded automatically.

 To prevent the automatic load of the Mellanox drivers upon system boot:
Add the following lines to the "/etc/modprobe.d/mlnx.conf" file.

blacklist mlx5_core
blacklist mlx5_ib

Set “ONBOOT=no” in the "/etc/infiniband/openib.conf" file.

65

3.

•
•
•

If the modules exist in the initramfs file, they can automatically be loaded by the kernel. To
prevent this behavior, update the initramfs using the operating systems’ standard tools.
Note: The process of updating the initramfs will add the blacklists from step 1, and will prevent
the kernel from loading the modules automatically.

mlnxofedinstall Return Codes
The table below lists the mlnxofedinstall script return codes and their meanings.

Return
Code

Meaning

0 The Installation ended successfully

1 The installation failed

2 No firmware was found for the adapter device

22 Invalid parameter

28 Not enough free space

171 Not applicable to this system configuration. This can occur when the required hardware is not
present on the system

172 Prerequisites are not met. For example, missing the required software installed or the hardware
is not configured correctly

173 Failed to start the mst driver

Additional Installation Procedures

Installing MLNX_OFED on Innova™ IPsec Adapter Cards
This type of installation is applicable to RedHat 7.2, 7.3 and 7.4 operating systems and Kernel 4.13.
As of version 4.2, MLNX_OFED supports Mellanox Innova IPsec EN adapter card that provides security
acceleration for IPsec-enabled networks.
For information on the usage of Innova IPsec, please refer to Mellanox Innova IPsec EN Adapter Card
documentation (https://www.mellanox.com/products/ethernet-adapters/innova-ipsec-en).
Prerequisites
In order to obtain Innova IPsec offload capabilities once MLNX_OFED is installed, make sure Kernel
v4.13 or newer is installed with the following configuration flags enabled:

CONFIG_XFRM_OFFLOAD
CONFIG_INET_ESP_OFFLOAD
CONFIG_INET6_ESP_OFFLOAD

For further details on how to use IPsec offload feature, please refer to IPSec Crypto Offload section.

Installing MLNX_OFED Using YUM
This type of installation is applicable to RedHat/OL and Fedora operating systems.

https://www.mellanox.com/products/ethernet-adapters/innova-ipsec-en

66

1.
2.

3.

4.

5.

6.

7.

Setting up MLNX_OFED YUM Repository
Log into the installation machine as root.
Mount the ISO image on your machine and copy its content to a shared location in your network.

mount -o ro,loop MLNX_OFED_LINUX-<ver>-<OS label>-<CPU arch>.iso /mnt

Download and install Mellanox Technologies GPG-KEY:
The key can be downloaded via the following link:
http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox

wget http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox
--2018-01-25 13:52:30-- http://www.mellanox.com/downloads/ofed/RPM-GPG-
KEY-Mellanox
Resolving www.mellanox.com... 72.3.194.0
Connecting to www.mellanox.com|72.3.194.0|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1354 (1.3K) [text/plain]
Saving to: ?RPM-GPG-KEY-Mellanox?

100%[===>] 1,354 --.-K/
s in 0s

2018-01-25 13:52:30 (247 MB/s) - ?RPM-GPG-KEY-Mellanox? saved [1354/1354]

Install the key.

sudo rpm --import RPM-GPG-KEY-Mellanox
warning: rpmts_HdrFromFdno: Header V3 DSA/SHA1 Signature, key ID 6224c050:
NOKEY
Retrieving key from file:///repos/MLNX_OFED/<MLNX_OFED file>/RPM-GPG-KEY-
Mellanox
Importing GPG key 0x6224C050:
 Userid: "Mellanox Technologies (Mellanox Technologies - Signing Key v2)
<support@mellanox.com>"
 From : /repos/MLNX_OFED/<MLNX_OFED file>/RPM-GPG-KEY-Mellanox
Is this ok [y/N]:

Check that the key was successfully imported.

rpm -q gpg-pubkey --qf '%{NAME}-%{VERSION}-%{RELEASE}\t%{SUMMARY}\n' |
grep Mellanox
gpg-pubkey-a9e4b643-520791ba gpg(Mellanox Technologies <support@mellanox.
com>)

Create a yum repository configuration file called "/etc/yum.repos.d/mlnx_ofed.repo" with the
following content:

[mlnx_ofed]
name=MLNX_OFED Repository
baseurl=file:///<path to extracted MLNX_OFED package>/RPMS
enabled=1
gpgkey=file:///<path to the downloaded key RPM-GPG-KEY-Mellanox>
gpgcheck=1

Check that the repository was successfully added.

http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox

67

1.

yum repolist
Loaded plugins: product-id, security, subscription-manager
This system is not registered to Red Hat Subscription Management. You can
use subscription-manager to register.
repo id repo name status
mlnx_ofed MLNX_OFED Repository 108
rpmforge RHEL 6Server - RPMforge.net - dag 4,597

repolist: 8,351

Installing MLNX_OFED Using the YUM Tool
After setting up the YUM repository for MLNX_OFED package, perform the following:

View the available package groups by invoking:

yum search mlnx-ofed-
mlnx-ofed-all.noarch : MLNX_OFED all installer package (with KMP support)
mlnx-ofed-all-user-only.noarch : MLNX_OFED all-user-only installer package
(User Space packages only)
mlnx-ofed-basic.noarch : MLNX_OFED basic installer package (with KMP
support)
mlnx-ofed-basic-user-only.noarch : MLNX_OFED basic-user-only installer
package (User Space packages only)
mlnx-ofed-bluefield.noarch : MLNX_OFED bluefield installer package (with
KMP support)
mlnx-ofed-bluefield-user-only.noarch : MLNX_OFED bluefield-user-only
installer package (User Space packages only)
mlnx-ofed-dpdk.noarch : MLNX_OFED dpdk installer package (with KMP
support)
mlnx-ofed-dpdk-upstream-libs.noarch : MLNX_OFED dpdk-upstream-libs
installer package (with KMP support)
mlnx-ofed-dpdk-upstream-libs-user-only.noarch : MLNX_OFED dpdk-upstream-
libs-user-only installer package (User Space packages only)
mlnx-ofed-dpdk-user-only.noarch : MLNX_OFED dpdk-user-only installer
package (User Space packages only)
mlnx-ofed-eth-only-user-only.noarch : MLNX_OFED eth-only-user-only
installer package (User Space packages only)
mlnx-ofed-guest.noarch : MLNX_OFED guest installer package (with KMP
support)
mlnx-ofed-guest-user-only.noarch : MLNX_OFED guest-user-only installer
package (User Space packages only)
mlnx-ofed-hpc.noarch : MLNX_OFED hpc installer package (with KMP support)
mlnx-ofed-hpc-user-only.noarch : MLNX_OFED hpc-user-only installer package
(User Space packages only)
mlnx-ofed-hypervisor.noarch : MLNX_OFED hypervisor installer package (with
KMP support)
mlnx-ofed-hypervisor-user-only.noarch : MLNX_OFED hypervisor-user-only
installer package (User Space packages only)
mlnx-ofed-kernel-only.noarch : MLNX_OFED kernel-only installer package
(with KMP support)
mlnx-ofed-vma.noarch : MLNX_OFED vma installer package (with KMP support)
mlnx-ofed-vma-eth.noarch : MLNX_OFED vma-eth installer package (with KMP
support)
mlnx-ofed-vma-eth-user-only.noarch : MLNX_OFED vma-eth-user-only installer
package (User Space packages only)
mlnx-ofed-vma-user-only.noarch : MLNX_OFED vma-user-only installer package
(User Space packages only)
mlnx-ofed-vma-vpi.noarch : MLNX_OFED vma-vpi installer package (with KMP
support)
mlnx-ofed-vma-vpi-user-only.noarch : MLNX_OFED vma-vpi-user-only installer
package (User Space packages only

where:
mlnx-ofed-all Installs all available packages in MLNX_OFED

68

2.

mlnx-ofed-basic Installs basic packages required for running Mellanox
cards

mlnx-ofed-guest Installs packages required by guest OS

mlnx-ofed-hpc Installs packages required for HPC

mlnx-ofed-hypervisor Installs packages required by hypervisor OS

mlnx-ofed-vma Installs packages required by VMA

mlnx-ofed-vma-eth Installs packages required by VMA to work over Ethernet

mlnx-ofed-vma-vpi Installs packages required by VMA to support VPI

bluefield Installs packages required for BlueField

dpdk Installs packages required for DPDK

dpdk-upstream-libs Installs packages required for DPDK using RDMA-Core

kernel-only Installs packages required for a non-default kernel

Note: MLNX_OFED provides kernel module RPM packages with KMP support for RHEL and
SLES. For other operating systems, kernel module RPM packages are provided only for the
operating system's default kernel. In this case, the group RPM packages have the supported
kernel version in their package's name.
Example:

mlnx-ofed-all-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED all installer
package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-basic-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED basic installer
package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-guest-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED guest installer
package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-hpc-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED hpc installer
package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-hypervisor-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED hypervisor
installer package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-vma-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED vma installer
package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-vma-eth-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED vma-eth
installer package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-vma-vpi-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED vma-vpi
installer package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-hypervisor-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED hypervisor
installer package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-vma-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED vma installer
package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-vma-eth-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED vma-eth
installer package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)
mlnx-ofed-vma-vpi-3.17.4-301.fc21.x86_64.noarch : MLNX_OFED vma-vpi
installer package for kernel 3.17.4-301.fc21.x86_64 (without KMP support)

If you have an operating system different than RHEL or SLES, or you have installed a kernel that
is not supported by default in MLNX_OFED, you can use the mlnx_add_kernel_support.sh script
to build MLNX_OFED for your kernel.
The script will automatically build the matching group RPM packages for your kernel so that you
can still install MLNX_OFED via yum.
Please note that the resulting MLNX_OFED repository will contain unsigned RPMs, therefore,
you should set 'gpgcheck=0' in the repository configuration file.
Install the desired group.

69

1.
2.

3.

4.

5.

6.

yum install mlnx-ofed-all
Loaded plugins: langpacks, product-id, subscription-manager
Resolving Dependencies
--> Running transaction check
---> Package mlnx-ofed-all.noarch 0:3.1-0.1.2 will be installed
--> Processing Dependency: kmod-isert = 1.0-OFED.3.1.0.1.2.1.g832a737.rhel7
u1 for package: mlnx-ofed-all-3.1-0.1.2.noarch
..................
..................
 qperf.x86_64 0:0.4.9-9
 rds-devel.x86_64 0:2.0.7-1.12
 rds-tools.x86_64 0:2.0.7-1.12
 sdpnetstat.x86_64 0:1.60-26
 srptools.x86_64 0:1.0.2-12

Complete!

Installing MLNX_OFED Using apt-get
This type of installation is applicable to Debian and Ubuntu operating systems.

Setting up MLNX_OFED apt-get Repository
Log into the installation machine as root.
Extract the MLNX_OFED package on a shared location in your network.
You can download it from http://www.mellanox.com > Products > Software> InfiniBand Drivers.
Create an apt-get repository configuration file called "/etc/apt/sources.list.d/mlnx_ofed.list"
with the following content:

deb file:/<path to extracted MLNX_OFED package>/DEBS ./

Download and install Mellanox Technologies GPG-KEY.

wget -qO - http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox |
sudo apt-key add -

Verify that the key was successfully imported.

apt-key list
pub 1024D/A9E4B643 2013-08-11
uid Mellanox Technologies <support@mellanox.com>
sub 1024g/09FCC269 2013-08-11

Update the apt-get cache.

Installing MLNX_OFED using the “YUM” tool does not automatically update the firmware.
To update the firmware to the version included in MLNX_OFED package, run:
yum install mlnx-fw-updater
OR:
Update the firmware to the latest version available on Mellanox Technologies’ Web site as
described in “Updating Firmware After Installation” section.

http://www.mellanox.com/

70

1.

sudo apt-get update

Installing MLNX_OFED Using the apt-get Tool
After setting up the apt-get repository for MLNX_OFED package, perform the following:

View the available package groups by invoking:

apt-cache search mlnx-ofed-
apt-cache search mlnx-ofed
knem-dkms - DKMS support for mlnx-ofed kernel modules
mlnx-ofed-kernel-dkms - DKMS support for mlnx-ofed kernel modules
mlnx-ofed-kernel-utils - Userspace tools to restart and tune mlnx-ofed
kernel modules
mlnx-ofed-vma-vpi - MLNX_OFED vma-vpi installer package (with DKMS
support)
mlnx-ofed-kernel-only - MLNX_OFED kernel-only installer package (with DKMS
support)
mlnx-ofed-bluefield - MLNX_OFED bluefield installer package (with DKMS
support)
mlnx-ofed-hpc-user-only - MLNX_OFED hpc-user-only installer package (User
Space packages only)
mlnx-ofed-dpdk-user-only - MLNX_OFED dpdk-user-only installer package
(User Space packages only)
mlnx-ofed-all-exact - MLNX_OFED all installer package (with DKMS support)
(exact)
mlnx-ofed-all - MLNX_OFED all installer package (with DKMS support)
mlnx-ofed-vma-vpi-user-only - MLNX_OFED vma-vpi-user-only installer package
 (User Space packages only)
mlnx-ofed-eth-only-user-only - MLNX_OFED eth-only-user-only installer
package (User Space packages only)
mlnx-ofed-vma-user-only - MLNX_OFED vma-user-only installer package (User
Space packages only)
mlnx-ofed-hpc - MLNX_OFED hpc installer package (with DKMS support)
mlnx-ofed-bluefield-user-only - MLNX_OFED bluefield-user-only installer
package (User Space packages only)
mlnx-ofed-dpdk - MLNX_OFED dpdk installer package (with DKMS support)
mlnx-ofed-vma-eth-user-only - MLNX_OFED vma-eth-user-only installer package
 (User Space packages only)
mlnx-ofed-all-user-only - MLNX_OFED all-user-only installer package (User
Space packages only)
mlnx-ofed-vma-eth - MLNX_OFED vma-eth installer package (with DKMS
support)
mlnx-ofed-vma - MLNX_OFED vma installer package (with DKMS support)
mlnx-ofed-dpdk-upstream-libs-user-only - MLNX_OFED dpdk-upstream-libs-user-
only installer package (User Space packages only)
mlnx-ofed-basic-user-only - MLNX_OFED basic-user-only installer package
(User Space packages only)
mlnx-ofed-basic-exact - MLNX_OFED basic installer package (with DKMS
support) (exact)
mlnx-ofed-basic - MLNX_OFED basic installer package (with DKMS support)
mlnx-ofed-dpdk-upstream-libs - MLNX_OFED dpdk-upstream-libs installer
package (with DKMS support)

where:
mlnx-ofed-all MLNX_OFED all installer package

mlnx-ofed-basic MLNX_OFED basic installer package

mlnx-ofed-vma MLNX_OFED vma installer package

mlnx-ofed-hpc MLNX_OFED HPC installer package

mlnx-ofed-vma-eth MLNX_OFED vma-eth installer package

71

2.

mlnx-ofed-vma-vpi MLNX_OFED vma-vpi installer package

knem-dkms MLNX_OFED DKMS support for mlnx-ofed kernel modules

kernel-dkms MLNX_OFED kernel-dkms installer package

kernel-only MLNX_OFED kernel-only installer package

bluefield MLNX_OFED bluefield installer package

mlnx-ofed-all-exact MLNX_OFED mlnx-ofed-all-exact installer package

dpdk MLNX_OFED dpdk installer package

mlnx-ofed-basic-exact MLNX_OFED mlnx-ofed-basic-exact installer package

dpdk-upstream-libs MLNX_OFED dpdk-upstream-libs installer package

Install the desired group.

apt-get install '<group name>'

Example:

apt-get install mlnx-ofed-all

Installing NEO-Host Using mlnxofedinstall Script
As of MLNX_OFED v4.5, NEO-Host users can opt to install the NEO-Host package embedded in
MLNX_OFED package.
In order to install NEO-Host, add the --with-neohost-backend flag to the mlnxofedinstall script run.
Example:

/mnt/mlnxofedinstall --with-neohost-backend

Uninstalling Mellanox OFED
Use the script /usr/sbin/ofed_uninstall.sh to uninstall the Mellanox OFED package. The script is
part of the ofed-scripts RPM.

Uninstalling Mellanox OFED Using the YUM Tool
Use the script /usr/sbin/ofed_uninstall.sh to uninstall the Mellanox OFED package. The script is part of
the ofed-scripts RPM.

Installing MLNX_OFED using the “apt-get” tool does not automatically update the
firmware.
To update the firmware to the version included in MLNX_OFED package, run:
apt-get install mlnx-fw-updater
OR:
Update the firmware to the latest version available on Mellanox Technologies’ Web site
as described in “Updating Firmware After Installation” section.

72

1.

2.
3.

Uninstalling Mellanox OFED Using the apt-get Tool
Use the script /usr/sbin/ofed_uninstall.sh to uninstall the Mellanox OFED package. The script is part of
the ofed-scripts package.

Updating Firmware After Installation
The firmware can be updated using one of the following methods:

Updating the Device Online
To update the device online on the machine from Mellanox site, use the following command line:

mlxfwmanager --online -u -d <device>

Example:

mlxfwmanager --online -u -d 0000:01:00.0
Querying Mellanox devices firmware ...

Device #1:

 Device Type: ConnectX6
 Part Number: MCX653106A-HDA_Ax
 Description: ConnectX-6 VPI adapter card; HDR IB (200Gb/s) and 200GbE;
dual-port QSFP56; PCIe4.0 x16; tall bracket; ROHS R6
 PSID: MT_0000000225
 PCI Device Name: 0000:01:00.0
 Base MAC: 98039b970cc2
 Versions: Current Available
 FW 20.26.4012 20.27.1016
 PXE 3.6.0101 3.5.0903
 UEFI 14.21.0016 14.20.0025

 Status: Up to date

Updating the Device Manually
In case you ran the mlnxofedinstall script with the ‘--without-fw-update’ option or you are using an
OEM card and now you wish to (manually) update firmware on your adapter card(s), you need to
perform the steps below. The following steps are also appropriate in case you wish to burn newer
firmware that you have downloaded from Mellanox Technologies’ Web site (http://www.mellanox.com >
Support > Firmware Download).

Get the device’s PSID.

mlxfwmanager_pci | grep PSID
PSID: MT_1210110019

Download the firmware BIN file from the Mellanox website or the OEM website.
Burn the firmware.

http://www.mellanox.com/

73

4.

•

•

mlxfwmanager_pci -i <fw_file.bin>

Reboot your machine once the firmware burning is completed.

Updating the Device Firmware Automatically upon System
Boot
Firmware can be automatically updated upon system boot.
The firmware update package (mlnx-fw-updater) is installed in the “/opt/mellanox/mlnx-fw-updater”
folder, and the openibd service script can invoke the firmware update process if requested on boot.
If the firmware is updated, the following message will be printed to the system’s standard logging file:

fw_updater: Firmware was updated. Please reboot your system for the changes to
take effect.

Otherwise, the following message will be printed:

fw_updater: Didn't detect new devices with old firmware.

Please note that this feature is disabled by default. To enable the automatic firmware update upon
system boot, set the following parameter to “yes” “RUN_FW_UPDATER_ONBOOT=yes” in the openibd
service configuration file “/etc/infiniband/openib.conf”.
You can opt to exclude a list of devices from the automatic firmware update procedure. To do so, edit
the configurations file “/opt/mellanox/mlnx-fw-updater/mlnx-fw-updater.conf” and provide a comma
separated list of PCI devices to exclude from the firmware update.
Example:

MLNX_EXCLUDE_DEVICES="00:05.0,00:07.0"

Updating Firmware and FPGA Image on Innova IPsec Cards
The firmware and FPGA update package (mlnx-fw-updater) are installed under “/opt/mellanox/mlnx-
fw-updater” folder.
The latest FW and FPGA update package can be downloaded from mellanox.com, under Products -->
Adapters --> Smart Adapters --> Innova IPsec --> Download tab.

You can run the following update script using one of the modes below:

/opt/mellanox/mlnx-fw-updater/mlnx_fpga_updater.sh

With -u flag to provide URL to the software package (tarball). Example:

./mlnx_fpga_updater.sh -u http://www.mellanox.com/downloads/fpga/ipsec/
Innova_IPsec_<version>.tgz

With -t flag to provide the path to the downloaded tarball. Example:

The current update package available on www.mellanox.com does not support the script
below. An update package that supports this script will become available in a future release.

http://mellanox.com/

74

•

1.

2.

3.

./mlnx_fpga_updater.sh -t <Innova_IPsec_bundle_file.tgz>

With -p flag to provide the path to the downloaded and extracted tarball. Example:

./mlnx_fpga_updater.sh -p <Innova_IPsec_extracted_bundle_directory>

For more information on the script usage, you can run mlnx_fpga_updater.sh -h.

UEFI Secure Boot
All kernel modules included in MLNX_OFED for RHEL7 and SLES12 are signed with x.509 key to
support loading the modules when Secure Boot is enabled.

Enrolling Mellanox's x.509 Public Key On your Systems
In order to support loading MLNX_OFED drivers when an OS supporting Secure Boot boots on a UEFI-
based system with Secure Boot enabled, the Mellanox x.509 public key should be added to the UEFI
Secure Boot key database and loaded onto the system key ring by the kernel.
Follow these steps below to add the Mellanox's x.509 public key to your system:

Download the x.509 public key.

wget http://www.mellanox.com/downloads/ofed/mlnx_signing_key_pub.der

Add the public key to the MOK list using the mokutil utility.
You will be asked to enter and confirm a password for this MOK enrollment request.

mokutil --import mlnx_signing_key_pub.der

Reboot the system.

The pending MOK key enrollment request will be noticed by shim.efi and it will launch MokManager.efi
to allow you to complete the enrollment from the UEFI console. You will need to enter the password
you previously associated with this request and confirm the enrollment. Once done, the public key is
added to the MOK list, which is persistent. Once a key is in the MOK list, it will be automatically
propagated to the system key ring and subsequent will be booted when the UEFI Secure Boot is
enabled.

It is recommended to perform firmware and FPGA upgrade on Innova IPsec cards using
this script only.

•
•

Prior to adding the Mellanox's x.509 public key to your system, please make sure:

The 'mokutil' package is installed on your system
The system is booted in UEFI mode

To see what keys have been added to the system key ring on the current boot, install the
'keyutils' package and run: #keyctl list %:.system_keyring

75

1.

2.

Removing Signature from Kernel Modules
The signature can be removed from a signed kernel module using the 'strip' utility which is provided by
the 'binutils' package.

strip -g my_module.ko

The strip utility will change the given file without saving a backup. The operation can be undone only by
resigning the kernel module. Hence, we recommend backing up a copy prior to removing the signature.

To remove the signature from the MLNX_OFED kernel modules:
Remove the signature.

rpm -qa | grep -E "kernel-ib|mlnx-ofa_kernel|iser|srp|knem|mlnx-rds|mlnx-
nfsrdma|mlnx-nvme|mlnx-rdma-rxe" | xargs rpm -ql | grep "\.ko$" | xargs
strip -g

Once the signature is removed, a message as the below will no longer be presented upon
module loading:

"Request for unknown module key 'Mellanox Technologies signing key:
61feb074fc7292f958419386ffdd9d5ca999e403' err -11"

However, please note that a message similar to the following will be presented:

"my_module: module verification failed: signature and/or required key
missing - tainting kernel"

This message is presented once, only upon first module boot that either has no signature or
whose key is not in the kernel key ring. Therefore, this message may go unnoticed. Once the
system is rebooted after unloading and reloading a kernel module, the message will appear
(this message cannot be eliminated).
Update the initramfs on RHEL systems with the stripped modules.

mkinitrd /boot/initramfs-$(uname -r).img $(uname -r) --force

Performance Tuning
Depending on the application of the user's system, it may be necessary to modify the default
configuration of network adapters based on the ConnectX® adapters. In case tuning is required, please
refer to the Performance Tuning for Mellanox Adapters Community post.

https://community.mellanox.com/s/article/performance-tuning-for-mellanox-adapters

76

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Features Overview and Configuration
The chapter contains the following sections:

Ethernet Network
InfiniBand Network
Storage Protocols
Virtualization
Resiliency
Docker Containers
HPC-X™
Fast Driver Unload
OVS Offload Using ASAP² Direct

Ethernet Network
The chapter contains the following sections:

Ethernet Interface
Quality of Service (QoS)
Ethtool
Checksum Offload
Ignore Frame Check Sequence (FCS) Errors
RDMA over Converged Ethernet (RoCE)
Flow Control
Explicit Congestion Notification (ECN)
RSS Support
Time-Stamping
Flow Steering
Wake-on-LAN (WoL)
Hardware Accelerated 802.1ad VLAN (Q-in-Q Tunneling)
VLAN Stripping in Linux Verbs
Dump Configuration
Local Loopback Disable
Kernel Transport Layer Security (kTLS) Offloads
IPsec Crypto Offload

Ethernet Interface

Port Type Management/VPI Cards Configuration
Ports of ConnectX-4 adapter cards and above can be individually configured to work as InfiniBand or
Ethernet ports. By default, both VPI ports are initialized as InfiniBand ports. If you wish to change the
port type, use the mlxconfig script after the driver is loaded.
For further information on how to set the port type, please refer to the MFT User Manual
(www.mellanox.con --> Products --> Software --> InfiniBand/VPI Software --> MFT - Firmware Tools)

Counters
Counters are used to provide information about how well an operating system, an application, a
service, or a driver is performing. The counter data help determine system bottlenecks and fine-tune
the system and application performance. The operating system, network, and devices provide counter

http://www.mellanox.con/

77

•
•
•

•

data that an application can consume to provide users with a graphical view of how well the system is
performing.
The counter index is a Queue Pair (QP) attribute given in the QP context. Multiple QPs may be
associated with the same counter set. If multiple QPs share the same counter, the counter value will
represent the cumulative total.

RoCE Counters
RoCE counters are available only through sysfs located under:

/sys/class/infiniband/<device>/ports/*/counters/
/sys/class/infiniband/<device>/ports/*/hw_counters/

For mlx5 port and RoCE counters, refer to the Understanding mlx5 Linux Counters Community post.

SR-IOV Counters
Physical Function can also read Virtual Functions' port counters through sysfs located under # /sys/
class/net/<interface_name>/device/sriov/<index>/stats/

ethtool Counters
The ethtool counters are counted in different places, according to which they are divided into groups.
Each counters group may also have different counter types.

For the full list of supported ethtool counters, refer to the Understanding mlx5 ethtool Counters
Community post.

Persistent Naming
To avoid network interface renaming after boot or driver restart, set the desired constant interface
name in the "/etc/udev/rules.d/70-persistent-net.rules" file.

Example for Ethernet interfaces:

https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters

78

•

PCI device 15b3:1019 (mlx5_core)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?", ATTR{address}
=="00:02:c9:fa:c3:50", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth",
NAME="eth1"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?", ATTR{address}
=="00:02:c9:fa:c3:51", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth",
NAME="eth2"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?", ATTR{address}
=="00:02:c9:e9:56:a1", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth",
NAME="eth3"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?", ATTR{address}
=="00:02:c9:e9:56:a2", ATTR{dev_id}=="0x0", ATTR{type}=="1", KERNEL=="eth",
NAME="eth4"

Example for IPoIB interfaces:

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{dev_id}=="0x0",
ATTR{type}=="32", NAME="ib0"
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{dev_id}=="0x1",
ATTR{type}=="32", NAME="ib1"

Interrupt Request (IRQ) Naming
Once IRQs are allocated by the driver, they are named mlx5_comp<x>@pci:<pci_addr>. The IRQs
corresponding to the channels in use are renamed to <interface>-<x>, while the rest maintain their
default name.
The mlx5_core driver allocates all IRQs during loading time to support the maximum possible number
of channels. Once the driver is up, no further IRQs are freed or allocated. Changing the number of
working channels does not re-allocate or free the IRQs.
The following example demonstrates how reducing the number of channels affects the IRQs names.

79

$ ethtool -l ens1
Channel parameters for ens1:
Pre-set maximums:
RX: 0
TX: 0
Other: 0
Combined: 12

Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 12

$ cat /proc/interrupts

98: 0 0 0 0 0 0 7935
0 0 0 0 0 IR-PCI-MSI-edge mlx5_async@pci:
0000:81:00.0
99: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-0
100: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-1
101: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-2
 102: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-3
103: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-4
104: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-5
105: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-6
106: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-7
107: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-8
108: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-9
109: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-10
110: 0 0 0 0 0 0 1
0 0 0 0 0 IR-PCI-MSI-edge ens1-11

$ ethtool -L ens1 combined 4
$ ethtool -l ens1
Channel parameters for ens1:
…
Current hardware settings:
RX: 0
TX: 0
Other: 0
Combined: 4

$ cat /proc/interrupts
98: 0 0 0 0 0 0 8455
0 0 0 0 0 IR-PCI-MSI-edge mlx5_async@pci:
0000:81:00.0
99: 0 0 0 0 0 0 1
2 0 0 0 0 IR-PCI-MSI-edge ens1-0
100: 0 0 0 0 0 0 1
0 2 0 0 0 IR-PCI-MSI-edge ens1-1
101: 0 0 0 0 0 0 1
0 0 2 0 0 IR-PCI-MSI-edge ens1-2
102: 0 0 0 0 0 0 1
0 0 0 2 0 IR-PCI-MSI-edge ens1-3
103: 0 0 0 0 0 0 1
0 0 0 0 1 IR-PCI-MSI-edge mlx5_comp4@pci:
0000:81:00.0

80

1.
2.
3.

4.
5.

•

•
•

1.
2.

104: 0 0 0 0 0 0 2
0 0 0 0 0 IR-PCI-MSI-edge mlx5_comp5@pci:
0000:81:00.0
105: 0 0 0 0 0 0 1
1 0 0 0 0 IR-PCI-MSI-edge mlx5_comp6@pci:
0000:81:00.0
106: 0 0 0 0 0 0 1
0 1 0 0 0 IR-PCI-MSI-edge mlx5_comp7@pci:
0000:81:00.0
107: 0 0 0 0 0 0 1
0 0 1 0 0 IR-PCI-MSI-edge mlx5_comp8@pci:
0000:81:00.0
108: 0 0 0 0 0 0 1
0 0 0 1 0 IR-PCI-MSI-edge mlx5_comp9@pci:
0000:81:00.0
109: 0 0 0 0 0 0 1
0 0 0 0 1 IR-PCI-MSI-edge mlx5_comp10@pci:
0000:81:00.0
110: 0 0 0 0 0 0 2
0 0 0 0 0 IR-PCI-MSI-edge mlx5_comp11@pci:
0000:81:00.0

Quality of Service (QoS)
Quality of Service (QoS) is a mechanism of assigning a priority to a network flow (socket, rdma_cm
connection) and manage its guarantees, limitations and its priority over other flows. This is
accomplished by mapping the user's priority to a hardware TC (traffic class) through a 2/3 stage
process. The TC is assigned with the QoS attributes and the different flows behave accordingly.

Mapping Traffic to Traffic Classes
Mapping traffic to TCs consists of several actions which are user controllable, some controlled by the
application itself and others by the system/network administrators.
The following is the general mapping traffic to Traffic Classes flow:

The application sets the required Type of Service (ToS).
The ToS is translated into a Socket Priority (sk_prio).
The sk_prio is mapped to a User Priority (UP) by the system administrator (some applications
set sk_prio directly).
The UP is mapped to TC by the network/system administrator.
TCs hold the actual QoS parameters

QoS can be applied on the following types of traffic. However, the general QoS flow may vary among
them:

Plain Ethernet - Applications use regular inet sockets and the traffic passes via the kernel
Ethernet driver
RoCE - Applications use the RDMA API to transmit using Queue Pairs (QPs)
Raw Ethernet QP - Application use VERBs API to transmit using a Raw Ethernet QP

Plain Ethernet Quality of Service Mapping
Applications use regular inet sockets and the traffic passes via the kernel Ethernet driver. The
following is the Plain Ethernet QoS mapping flow:

The application sets the ToS of the socket using setsockopt (IP_TOS, value).
ToS is translated into the sk_prio using a fixed translation:

81

3.

•

•

1.

2.

3.

•

•

TOS 0 <=> sk_prio 0
TOS 8 <=> sk_prio 2
TOS 24 <=> sk_prio 4
TOS 16 <=> sk_prio 6

The Socket Priority is mapped to the UP:

If the underlying device is a VLAN device, egress_map is used controlled by the
vconfig command. This is per VLAN mapping.
If the underlying device is not a VLAN device, the mapping is done in the driver.

4. The UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad daemon if
DCBX is used.

RoCE Quality of Service Mapping
Applications use RDMA-CM API to create and use QPs. The following is the RoCE QoS mapping flow:

The application sets the ToS of the QP using the rdma_set_option
option(RDMA_OPTION_ID_TOS, value).
ToS is translated into the Socket Priority (sk_prio) using a fixed translation:

TOS 0 <=> sk_prio 0
TOS 8 <=> sk_prio 2
TOS 24 <=> sk_prio 4
TOS 16 <=> sk_prio 6

The Socket Priority is mapped to the User Priority (UP) using the tc command.

In the case of a VLAN device where the parent real device is used for the purpose of this
mapping
If the underlying device is a VLAN device, and the parent real device was not used for the
mapping, the VLAN device's egress_map is used

4. UP is mapped to the TC as configured by the mlnx_qos tool or by the lldpad daemon if DCBX is
used.

Map Priorities with set_egress_map
For RoCE old kernels that do not support set_egress_map, use the tc_wrap script to map between
sk_prio and UP. Use tc_wrap with option -u. For example:

Socket applications can use setsockopt (SK_PRIO, value) to directly set the sk_prio of the
socket. In this case, the ToS to sk_prio fixed mapping is not needed. This allows the application
and the administrator to utilize more than the 4 values possible via ToS.

In the case of a VLAN interface, the UP obtained according to the above mapping is also used
in the VLAN tag of the traffic.

With RoCE, there can only be 4 predefined ToS values for the purpose of QoS mapping.

82

•
•
•
•
•
•

•
•

tc_wrap -i <ethX> -u <skprio2up mapping>

Quality of Service Properties
The different QoS properties that can be assigned to a TC are:

Strict Priority
Enhanced Transmission Selection (ETS)
Rate Limit
Trust State
Receive Buffer
DCBX Control Mode

Strict Priority
When setting a TC's transmission algorithm to be 'strict', then this TC has absolute (strict) priority over
other TC strict priorities coming before it (as determined by the TC number: TC 7 is the highest priority,
TC 0 is lowest). It also has an absolute priority over nonstrict TCs (ETS).
This property needs to be used with care, as it may easily cause starvation of other TCs.
A higher strict priority TC is always given the first chance to transmit. Only if the highest strict priority
TC has nothing more to transmit, will the next highest TC be considered.
Nonstrict priority TCs will be considered last to transmit.
This property is extremely useful for low latency low bandwidth traffic that needs to get immediate
service when it exists, but is not of high volume to starve other transmitters in the system.

Enhanced Transmission Selection (ETS)
Enhanced Transmission Selection standard (ETS) exploits the time periods in which the offered load of
a particular Traffic Class (TC) is less than its minimum allocated bandwidth by allowing the difference
to be available to other traffic classes.
After servicing the strict priority TCs, the amount of bandwidth (BW) left on the wire may be split among
other TCs according to a minimal guarantee policy.
If, for instance, TC0 is set to 80% guarantee and TC1 to 20% (the TCs sum must be 100), then the BW
left after servicing all strict priority TCs will be split according to this ratio.
Since this is a minimum guarantee, there is no maximum enforcement. This means, in the same
example, that if TC1 did not use its share of 20%, the reminder will be used by TC0.
ETS is configured using the mlnx_qos tool (mlnx_qos) which allows you to:

Assign a transmission algorithm to each TC (strict or ETS)
Set minimal BW guarantee to ETS TCs
Usage:

mlnx_qos -i \[options\]

Rate Limit
Rate limit defines a maximum bandwidth allowed for a TC. Please note that 10% deviation from the
requested values is considered acceptable.

Trust State
Trust state enables prioritizing sent/received packets based on packet fields.
The default trust state is PCP. Ethernet packets are prioritized based on the value of the field (PCP/
DSCP).

83

•

•
•
•
•
•
•
•

For further information on how to configure Trust mode, please refer to HowTo Configure Trust State
on Mellanox Adapters Community post.

Receive Buffer
By default, the receive buffer configuration is controlled automatically. Users can override the receive
buffer size and receive buffer's xon and xoff thresholds using mlnx_qos tool.
For further information, please refer to HowTo Tune the Receive buffers on Mellanox Adapters
Community post.

DCBX Control Mode
DCBX settings, such as "ETS" and "strict priority" can be controlled by firmware or software. When
DCBX is controlled by firmware, changes of QoS settings cannot be done by the software. The DCBX
control mode is configured using the mlnx_qos -d os/fw command.
For further information on how to configure the DCBX control mode, please refer to mlnx_qos
Community post.

Quality of Service Tools

mlnx_qos
mlnx_qos is a centralized tool used to configure QoS features of the local host. It communicates
directly with the driver thus does not require setting up a DCBX daemon on the system.
The mlnx_qos tool enables the administrator of the system to:

Inspect the current QoS mappings and configuration
The tool will also display maps configured by TC and vconfig set_egress_map tools, in order to
give a centralized view of all QoS mappings.
Set UP to TC mapping
Assign a transmission algorithm to each TC (strict or ETS)
Set minimal BW guarantee to ETS TCs
Set rate limit to TCs
Set DCBX control mode
Set cable length
Set trust state

Usage

mlnx_qos -i <interface> \[options\]

Options
--version Show the program's version number and exit

-h, --help Show this help message and exit

Setting the Trust State mode shall be done before enabling SR-IOV in order to propagate the
Trust State to the VFs.

For an unlimited ratelimit, set the ratelimit to 0.

https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2933
https://community.mellanox.com/docs/DOC-2792

84

-f LIST, --pfc=LIST Set priority flow control for each priority. LIST is
a comma separated value for each priority starting from
0 to 7. Example: 0,0,0,0,1,1,1,1 enable PFC on TC4-7

-p LIST, --prio_tc=LIST Maps UPs to TCs. LIST is 8 comma-separated TC numbers. Example:
0,0,0,0,1,1,1,1 maps UPs 0-3 to TC0, and UPs 4-7 to TC1

-s LIST, --tsa=LIST Transmission algorithm for each TC. LIST is comma separated
algorithm names for each TC. Possible algorithms: strict, ets and
vendor. Example: vendor,strict,ets,ets,ets,ets,ets,ets sets TC0 to
vendor, TC1 to strict, TC2-7 to ets

-t LIST, --tcbw=LIST Set the minimally guaranteed %BW for ETS TCs. LIST is comma-
separated percents for each TC. Values set to TCs that are not
configured to ETS algorithm are ignored but must be present.
Example: if TC0,TC2 are set to ETS, then 10,0,90,0,0,0,0,0will set TC0 to
10% and TC2 to 90%. Percents must sum to 100

-r LIST, --ratelimit=LIST Rate limit for TCs (in Gbps). LIST is a comma-separated Gbps limit for
each TC. Example: 1,8,8 will limit TC0 to 1Gbps, and TC1,TC2 to 8 Gbps
each

-d DCBX, --dcbx=DCBX Set dcbx mode to firmware controlled(fw) or OS controlled(os). Note,
when in OS mode, mlnx_qos should not be used in parallel with other
dcbx tools, such as lldptool

--trust=TRUST set priority trust state to pcp or dscp

--dscp2prio=DSCP2PRIO Set/del a (dscp,prio) mapping. Example 'set,30,2' maps dscp 30 to
priority 2. 'del,30,2' resets the dscp 30 mapping back to the default
setting priority 0

--cable_len=CABLE_LEN Set cable_len for buffer's xoff and xon thresholds

-i INTF, --interface=INTF Interface name

-a Show all interface's TCs

Get Current Configuration

85

ofed_scripts/utils/mlnx_qos -i ens1f0
DCBX mode: OS controlled
Priority trust state: dscp
dscp2prio mapping:
 prio:0 dscp:07,06,05,04,03,02,01,00,
 prio:1 dscp:15,14,13,12,11,10,09,08,
 prio:2 dscp:23,22,21,20,19,18,17,16,
 prio:3 dscp:31,30,29,28,27,26,25,24,
 prio:4 dscp:39,38,37,36,35,34,33,32,
 prio:5 dscp:47,46,45,44,43,42,41,40,
 prio:6 dscp:55,54,53,52,51,50,49,48,
 prio:7 dscp:63,62,61,60,59,58,57,56,
Cable len: 7
PFC configuration:
 priority 0 1 2 3 4 5 6 7
 enabled 0 0 0 0 0 0 0 0
tc: 0 ratelimit: unlimited, tsa: vendor
 priority: 1
tc: 1 ratelimit: unlimited, tsa: vendor
 priority: 0
tc: 2 ratelimit: unlimited, tsa: vendor
 priority: 2
tc: 3 ratelimit: unlimited, tsa: vendor
 priority: 3
tc: 4 ratelimit: unlimited, tsa: vendor
 priority: 4
tc: 5 ratelimit: unlimited, tsa: vendor
 priority: 5
tc: 6 ratelimit: unlimited, tsa: vendor
 priority: 6
tc: 7 ratelimit: unlimited, tsa: vendor
 priority: 7

Set ratelimit. 3Gbps for tc0 4Gbps for tc1 and 2Gbps for tc2

mlnx_qos -i <interface> -p 0,1,2 -r 3,4,2
tc: 0 ratelimit: 3 Gbps, tsa: strict
 up: 0
 skprio: 0
 skprio: 1
 skprio: 2 (tos: 8)
 skprio: 3
 skprio: 4 (tos: 24)
 skprio: 5
 skprio: 6 (tos: 16)
 skprio: 7
 skprio: 8
 skprio: 9
 skprio: 10
 skprio: 11
 skprio: 12
 skprio: 13
 skprio: 14
 skprio: 15
 up: 3
 up: 4
 up: 5
 up: 6
 up: 7
tc: 1 ratelimit: 4 Gbps, tsa: strict
 up: 1
tc: 2 ratelimit: 2 Gbps, tsa: strict
 up: 2

ConfigureQoS. Map UP0,7 to tc0,1,2,3 to tc1 and 4,5,6 to tc2. Set tc0,tc1 as ets and tc2 as strict. Divide
ets 30% for tc0 and 70% for tc1

86

mlnx_qos -i <interface> -s ets,ets,strict -p 0,1,1,1,2,2,2 -t 30,70
tc: 0 ratelimit: 3 Gbps, tsa: ets, bw: 30%
 up: 0
 skprio: 0
 skprio: 1
 skprio: 2 (tos: 8)
 skprio: 3
 skprio: 4 (tos: 24)
 skprio: 5
 skprio: 6 (tos: 16)
 skprio: 7
 skprio: 8
 skprio: 9
 skprio: 10
 skprio: 11
 skprio: 12
 skprio: 13
 skprio: 14
 skprio: 15
 up: 7
tc: 1 ratelimit: 4 Gbps, tsa: ets, bw: 70%
 up: 1
 up: 2
 up: 3
tc: 2 ratelimit: 2 Gbps, tsa: strict
 up: 4
 up: 5
 up: 6

tc and tc_wrap.py
The tc tool is used to create 8 Traffic Classes (TCs).
The tool will either use the sysfs (/sys/class/net/<ethX>/qos/tc_num) or the tc tool to create the TCs.
Usage

tc_wrap.py -i <interface> \[options\]

Options
--version show program's version number and exit

-h, --help show this help message and exit

-u SKPRIO_UP, --skprio_up=SKPRIO_UP maps sk_prio to priority for RoCE. LIST is <=16 comma
separated priority. index of element is sk_prio

-i INTF, --interface=INTF Interface name

Example
Run:

tc_wrap.py -i enp139s0

Output:

87

•
•

•
•
•
•
•

•
•
•

1.

Tarrfic classes are set to 8

UP 0
 skprio: 0 (vlan 5)
UP 1
 skprio: 1 (vlan 5)
UP 2
 skprio: 2 (vlan 5 tos: 8)
UP 3
 skprio: 3 (vlan 5)
UP 4
 skprio: 4 (vlan 5 tos: 24)
UP 5
 skprio: 5 (vlan 5)
UP 6
 skprio: 6 (vlan 5 tos: 16)
UP 7
 skprio: 7 (vlan 5)

Additional Tools
tc tool compiled with the sch_mqprio module is required to support kernel v2.6.32 or higher. This is a
part of iproute2 package v2.6.32-19 or higher. Otherwise, an alternative custom sysfs interface is
available.

mlnx_qos tool (package: ofed-scripts) requires python version 2.5 < = X
tc_wrap.py (package: ofed-scripts) requires python version 2.5 < = X

Packet Pacing
ConnectX-4 and above devices allow packet pacing (traffic shaping) per flow. This capability is achieved
by mapping a flow to a dedicated send queue and setting a rate limit on that Send queue.
Note the following:

Up to 512 send queues are supported
16 different rates are supported
The rates can vary from 1 Mbps to line rate in 1 Mbps resolution
Multiple queues can be mapped to the same rate (each queue is paced independently)
It is possible to configure rate limit per CPU and per flow in parallel

System Requirements
MLNX_OFED, v3.3 or higher
Linux kernel v4.1 or higher
ConnectX-4 or ConnectX-4 Lx adapter cards with an official firmware version

Packet Pacing Configuration

Firmware Activation:

 To activate Packet Pacing in the firmware:
First, make sure Mellanox Firmware Tools service (mst) is started:

mst start

This configuration is non-persistent and does not survive driver restart.

88

2.

a.

b.
i.

ii.

•
•
•
•

Then run:

#echo "MLNX_RAW_TLV_FILE" > /tmp/mlxconfig_raw.txt
#echo “0x00000004 0x0000010c 0x00000000 0x00000001" >> /tmp/
mlxconfig_raw.txt
#yes | mlxconfig -d <mst_dev> -f /tmp/mlxconfig_raw.txt set_raw > /dev/null
#reboot /mlxfwreset

 To deactivate Packet Pacing in the firmware, run:

#echo "MLNX_RAW_TLV_FILE" > /tmp/mlxconfig_raw.txt
#echo “0x00000004 0x0000010c 0x00000000 0x00000000" >> /tmp/
mlxconfig_raw.txt
#yes | mlxconfig -d <mst_dev >-f /tmp/mlxconfig_raw.txt set_raw > /dev/null
#reboot /mlxfwreset

Driver Activation:
There are two operation modes for Packet Pacing:

Rate limit per CPU core:
When XPS is enabled, traffic from a CPU core will be sent using the corresponding send
queue. By limiting the rate on that queue, the transmit rate on that CPU core will be
limited. For example:

echo 300 > /sys/class/net/ens2f1/queues/tx-0/tx_maxrate

In this case, the rate on Core 0 (tx-0) is limited to 300Mbit/sec.
Rate limit per flow:

 The driver allows opening up to 512 additional send queues using the following
command:

ethtool -L ens2f1 other 1200

In this case, 1200 additional queues are opened
Create flow mapping.
Users can map a certain destination IP and/or destination layer 4 Port to a specific
send queue. The match precedence is as follows:

IP + L4 Port
IP only
L4 Port only
No match (the flow would be mapped to default queues)
To create flow mapping:
Configure the destination IP. Write the IP address in hexadecimal
representation to the relevant sysfs entry. For example, to map IP address
192.168.1.1 (0xc0a80101) to send queue 310, run the following command:

echo 0xc0a80101 > /sys/class/net/ens2f1/queues/tx-310/
flow_map/dst_ip

To map Destination L4 3333 port (either TCP or UDP) to the same queue,
run:

echo 3333 > /sys/class/net/ens2f1/queues/tx-310/flow_map/
dst_port

89

•
•
•
•
•
•

From this point on, all traffic destined to the given IP address and L4 port
will be sent using send queue 310. All other traffic will be sent using the
original send queue.

iii. Limit the rate of this flow using the following command:

echo 100 > /sys/class/net/ens2f1/queues/tx-310/tx_maxrate

Note: Each queue supports only a single IP+Port combination.

Ethtool
Ethtool is a standard Linux utility for controlling network drivers and hardware, particularly for wired
Ethernet devices. It can be used to:

Get identification and diagnostic information
Get extended device statistics
Control speed, duplex, auto-negotiation and flow control for Ethernet devices
Control checksum offload and other hardware offload features
Control DMA ring sizes and interrupt moderation
Flash device firmware using a .mfa2 image

Ethtool Supported Options

Options Description

ethtool --set-priv-flags eth<x> <priv flag> <on/off> Enables/disables driver feature matching the given private
flag.

ethtool --show-priv-flags eth<x> Shows driver private flags and their states (ON/OFF).

ethtool -a eth<x> Queries the pause frame settings.

ethtool -A eth<x> [rx on|off] [tx on|off] Sets the pause frame settings.

ethtool -c eth<x> Queries interrupt coalescing settings.

ethtool -C eth<x> [pkt-rate-low N] [pkt-rate-high
N] [rx-usecs-low N] [rx-usecs-high N]

Sets the values for packet rate limits and for moderation
time high and low values.

ethtool -C eth<x> [rx-usecs N] [rx-frames N] Sets the interrupt coalescing setting.

rx-frames will be enforced immediately, rx-usecs will be
enforced only when adaptive moderation is disabled.

Note: usec settings correspond to the time to wait after the
last packet is sent/received before triggering an
interrupt.

ethtool -C eth<x> adaptive-rx on|off Enables/disables adaptive interrupt moderation.

By default, the driver uses adaptive interrupt moderation
for the receive path, which adjusts the moderation time to
the traffic pattern.

90

Options Description

ethtool -C eth<x> adaptive-tx on|off Note: Supported by mlx5e for ConnectX-4 and above
adapter cards.

Enables/disables adaptive interrupt moderation.

By default, the driver uses adaptive interrupt moderation
for the transmit path, which adjusts the moderation
parameters (time/frames) to the traffic pattern.

ethtool -g eth<x> Queries the ring size values.

ethtool -G eth<x> [rx <N>] [tx <N>] Modifies the ring size.

ethtool -i eth<x> Checks driver and device information.

 For example:

 driver: mlx5_core

 version: 5.1-0.4.0

 firmware-version: 4.6.4046 (MT_QEMU000000)

 expansion-rom-version:

 bus-info: 0000:07:00.0

 supports-statistics: yes

 supports-test: yes

 supports-eeprom-access: no

 supports-register-dump: no

 supports-priv-flags: yes

ethtool -k eth<x> Queries the stateless offload status.

91

•

•

Options Description

ethtool -K eth<x> [rx on|off] [tx on|off] [sg on|off]
[tso on|off] [lro on|off] [gro on|off] [gso on|off]
[rxvlan on|off] [txvlan on|off] [ntuple on/off]
[rxhash on/off] [rx-all on/off] [rx-fcs on/off]

Sets the stateless offload status.

TCP Segmentation Offload (TSO), Generic Segmentation
Offload (GSO): increase outbound throughput by reducing
CPU overhead. It works by queuing up large buffers and
letting the network interface card split them into separate
packets.

Large Receive Offload (LRO): increases inbound
throughput of high-bandwidth network connections by
reducing CPU overhead. It works by aggregating multiple
incoming packets from a single stream into a larger buffer
before they are passed higher up the networking stack,
thus reducing the number of packets that have to be
processed. LRO is available in kernel versions < 3.1 for
untagged traffic.

Hardware VLAN insertion Offload (txvlan): When enabled,
the sent VLAN tag will be inserted into the packet by the
hardware.

Note: LRO will be done whenever possible. Otherwise GRO
will be done. Generic Receive Offload (GRO) is available
throughout all kernels.

Hardware VLAN Striping Offload (rxvlan): When enabled
received VLAN traffic will be stripped from the VLAN tag by
the hardware.

RX FCS (rx-fcs): Keeps FCS field in the received
packets.Sets the stateless offload status.

RX FCS validation (rx-all): Ignores FCS validation on the
received packets.

ethtool -l eth<x> Shows the number of channels.

ethtool -L eth<x> [rx <N>] [tx <N>] Sets the number of channels.

Notes:

This also resets the RSS table to its default
distribution, which is uniform across the cores on
the NUMA (non-uniform memory access) node that
is closer to the NIC.
For ConnectX®-4 cards, use ethtool -L eth<x>
combined <N> to set both RX and TX channels.

ethtool -m|--dump-module-eeprom eth<x> [raw
on|off] [hex on|off] [offset N] [length N]

Queries/decodes the cable module eeprom information.

ethtool -p|--identify DEVNAME Enables visual identification of the port by LED blinking
[TIME-IN-SECONDS].

ethtool -p|--identify eth<x> <LED duration> Allows users to identify interface's physical port by turning
the ports LED on for a number of seconds.

Note: The limit for the LED duration is 65535 seconds.

ethtool -S eth<x> Obtains additional device statistics.

92

•

•

•

Options Description

ethtool -s eth<x> advertise <N> autoneg on Changes the advertised link modes to requested link
modes <N>

To check the link modes’ hex values, run <man ethtool>
and to check the supported link modes, run ethtool
eth<x>

For advertising new link modes, make sure to configure
the entire bitmap as follows:

200GAUI-4 / 200GBASE-CR4/KR4 0x7c0000000000000
00

100GAUI-2 / 100GBASE-CR2 / KR2 0x3E0000000000000
0

CAUI-4 / 100GBASE-CR4 / KR4 0xF000000000

50GAUI-1 / LAUI-1/ 50GBASE-CR /
KR

0x1F0000000000000

50GAUI-2 / LAUI-2/ 50GBASE-
CR2/KR2

0x10C00000000

XLAUI-4/XLPPI-4 // 40G 0x7800000

25GAUI-1/ 25GBASE-CR / KR 0x380000000

XFI / XAUI-1 // 10G 0x7C0000181000

5GBASE-R 0x1000000000000

2.5GBASE-X / 2.5GMII 0x820000000000

1000BASE-X / SGMII 0x20000020020

Notes:

Both previous and new link modes configurations
are supported, however, they must be run
separately.
Any link mode configuration on Kernels below v5.1
and ConnectX-6 HCAs will result in the
advertisement of the full capabilities.
<autoneg on> only sends a hint to the driver that
the user wants to modify advertised link modes and
not speed.

ethtool -s eth<x> msglvl [N] Changes the current driver message level.

ethtool -s eth<x> speed <SPEED> autoneg off Changes the link speed to requested <SPEED>. To check
the supported speeds, run ethtool eth<x>.

Note: <autoneg off> does not set autoneg OFF, it only hints
the driver to set a specific speed.

ethtool -t eth<x> Performs a self-diagnostics test.

ethtool -T eth<x> Shows time stamping capabilities

ethtool -x eth<x> Retrieves the receive flow hash indirection table.

93

•

•
•

•

•
•

•

Options Description

ethtool -X eth<x> equal a b c... Sets the receive flow hash indirection table.

Note: The RSS table configuration is reset whenever the
number of channels is modified (using ethtool -L
command).

ethtool --show-fec eth<x> Queries current Forward Error Correction (FEC) encoding
in case FEC is supported.

Note: An output of "baser" implies Firecode encoding.

ethtool --set-fec eth<x> encoding auto|off|rs|
baser

Configures Forward Error Correction (FEC).

Note: ‘baser’ encoding applies to the Firecode encoding,
and ‘auto’ regards the HCA’s default.

ethtool -f|--flash <devname> FILE [N] Flash firmware image on the device using the
specified .mfa2 file (FILE). By default, the command
flashes all the regions on the device unless a region
number (N) is specified.

Checksum Offload
MLNX_OFED supports the following Receive IP/L4 Checksum Offload modes:

CHECKSUM_UNNECESSARY: By setting this mode the driver indicates to the Linux Networking
Stack that the hardware successfully validated the IP and L4 checksum so the Linux Networking
Stack does not need to deal with IP/L4 Checksum validation.
Checksum Unnecessary is passed to the OS when all of the following are true:

Ethtool -k <DEV> shows rx-checksumming: on
Received TCP/UDP packet and both IP checksum and L4 protocol checksum are correct.

CHECKSUM_COMPLETE: When the checksum validation cannot be done or fails, the driver still
reports to the OS the calculated by hardware checksum value. This allows accelerating
checksum validation in Linux Networking Stack, since it does not have to calculate the whole
checksum including payload by itself.
Checksum Complete is passed to OS when both of the following is true:

Ethtool -k <DEV> shows rx-checksumming: on
Received IPv4/IPv6 non-TCP/UDP packet

CHECKSUM_NONE: By setting this mode the driver indicates to the Linux Networking Stack that
the hardware failed to validate the IP or L4 checksum so the Linux Networking Stack must
calculate and validate the IP/L4 Checksum.
Checksum None is passed to OS for all other cases.

Ignore Frame Check Sequence (FCS) Errors
Upon receiving packets, the packets go through a checksum validation process for the FCS field. If the
validation fails, the received packets are dropped.
When FCS is enabled (disabled by default), the device does not validate the FCS field even if the field is
invalid.
It is not recommended to enable FCS.
For further information on how to enable/disable FCS, please refer to ethtool option rx-fcs on/off.

94

•

•

•

•

•

•

•
•

RDMA over Converged Ethernet (RoCE)
Remote Direct Memory Access (RDMA) is the remote memory management capability that allows
server-to-server data movement directly between application memory without any CPU involvement.
RDMA over Converged Ethernet (RoCE) is a mechanism to provide this efficient data transfer with very
low latencies on lossless Ethernet networks. With advances in data center convergence over reliable
Ethernet, ConnectX® Ethernet adapter cards family with RoCE uses the proven and efficient RDMA
transport to provide the platform for deploying RDMA technology in mainstream data center
application at 10GigE and 40GigE link-speed. ConnectX® Ethernet adapter cards family with its
hardware offload support takes advantage of this efficient RDMA transport (InfiniBand) services over
Ethernet to deliver ultra-low latency for performance-critical and transaction-intensive applications
such as financial, database, storage, and content delivery networks.
When working with RDMA applications over Ethernet link layer the following points should be noted:

The presence of a Subnet Manager (SM) is not required in the fabric. Thus, operations that
require communication with the SM are managed in a different way in RoCE. This does not affect
the API but only the actions such as joining the multicast group, that need to be taken when
using the API
Since LID is a layer 2 attribute of the InfiniBand protocol stack, it is not set for a port and is
displayed as zero when querying the port
With RoCE, the alternate path is not set for RC QP. Therefore, APM (another type of High
Availability and part of the InfiniBand protocol) is not supported
Since the SM is not present, querying a path is impossible. Therefore, the path record structure
must be filled with relevant values before establishing a connection. Hence, it is recommended
working with RDMA-CM to establish a connection as it takes care of filling the path record
structure
VLAN tagged Ethernet frames carry a 3-bit priority field. The value of this field is derived from
the IB SL field by taking the 3 least significant bits of the SL field
RoCE traffic is not shown in the associated Ethernet device's counters since it is offloaded by the
hardware and does not go through Ethernet network driver. RoCE traffic is counted in the same
place where InfiniBand traffic is counted; /sys/class/infiniband/<device>/ports/<port number>/
counters/

RoCE Modes
RoCE encapsulates IB transport in one of the following Ethernet packets:

RoCEv1 - dedicated ether type (0x8915)
RoCEv2 - UDP and dedicated UDP port (4791)

RoCEv1 and RoCEv2 Protocol Stack

95

•
•
•

RoCEv1
RoCE v1 protocol is defined as RDMA over Ethernet header (as shown in the figure above). It uses
ethertype 0x8915 and can be used with or without the VLAN tag. The regular Ethernet MTU applies on
the RoCE frame.

RoCEv2
A straightforward extension of the RoCE protocol enables traffic to operate in IP layer 3 environments.
This capability is obtained via a simple modification of the RoCE packet format. Instead of the GRH
used in RoCE, IP routable RoCE packets carry an IP header which allows traversal of IP L3 Routers and
a UDP header (RoCEv2 only) that serves as a stateless encapsulation layer for the RDMA Transport
Protocol Packets over IP.
The proposed RoCEv2 packets use a well-known UDP destination port value that unequivocally
distinguishes the datagram. Similar to other protocols that use UDP encapsulation, the UDP source
port field is used to carry an opaque flow-identifier that allows network devices to implement packet
forwarding optimizations (e.g. ECMP) while staying agnostic to the specifics of the protocol header
format.
Furthermore, since this change exclusively affects the packet format on the wire, and due to the fact
that with RDMA semantics packets are generated and consumed below the AP, applications can
seamlessly operate over any form of RDMA service, in a completely transparent way.

GID Table Population
GID table entries are created whenever an IP address is configured on one of the Ethernet devices of
the NIC's ports. Each entry in the GID table for RoCE ports has the following fields:

GID value
GID type
Network device

The GID table is occupied with two GIDs, both with the same GID value but with different types. The
network device in an entry is the Ethernet device with the IP address that GID is associated with. The

Both RoCEv1 and RoCEv2 are supported by default; the driver associates all GID indexes to
RoCEv1 and RoCEv2, thus, a single entry for each RoCE version.

For further information, please refer to HowTo Configure RoCEv2 Community post.

https://community.mellanox.com/docs/DOC-1444
https://community.mellanox.com/docs/DOC-1444
https://community.mellanox.com/docs/DOC-1444
https://community.mellanox.com/docs/DOC-1444
https://community.mellanox.com/docs/DOC-1444

96

•

•

•

GID format can be of 2 types; IPv4 and IPv6. IPv4 GID is an IPv4-mapped IPv6 address, while IPv6 GID is
the IPv6 address itself. Layer 3 header for packets associated with IPv4 GIDs will be IPv4 (for RoCEv2)
and IPv6/GRH for packets associated with IPv6 GIDs and IPv4 GIDs for RoCEv1.

GID Table in sysfs
GID table is exposed to userspace via sysfs

GID values can be read from:

/sys/class/infiniband/{device}/ports/{port}/gids/{index}

GID type can be read from:

/sys/class/infiniband/{device}/ports/{port}/gid_attrs/types/{index}

GID net_device can be read from:

/sys/class/infiniband/{device}/ports/{port}/gid_attrs/ndevs/{index}

Setting the RoCE Mode for a Queue Pair (QP)
Setting RoCE mode for devices that support two RoCE modes is different for RC/UC QPs (connected QP
types) and UD QP.
To modify an RC/UC QP (connected QP) from INIT to RTR, an Address Vector (AV) must be given. The
AV, among other attributes, should specify the index of the port's GID table for the source GID of the
QP. The GID type in that index will be used to set the RoCE type of the QP.

Setting RoCE Mode of RDMA_CM Applications
RDMA_CM interface requires only the active side of the peer to pass the IP address of the passive side.
The RDMA_CM decides upon the source GID to be used and obtains it from the GID table. Since more
than one instance of the GID value is possible, the lookup should be also according to the GID type. The
type to use for the lookup is defined as a global value of the RDMA_CM module. Changing the value of
the GID type for the GID table lookups is done using the cma_roce_mode script.

To print the current RoCE mode for a device port:

cma_roce_mode -d <dev> -p <port>

To set the RoCE mode for a device port:

cma_roce_mode -d <dev> -p <port> -m <1|2>

GID Table Example
The following is an example of the GID table.

DEV POR
T

INDE
X

GID IPv4 Type Netdev

mlx5_0 1 0 fe80:0000:0000:0000:0202:c9ff:feb6:7c70 RoCE V2 eth1

97

•
•
•
•
•

•

•

•

DEV POR
T

INDE
X

GID IPv4 Type Netdev

mlx5_0 1 1 fe80:0000:0000:0000:0202:c9ff:feb6:7c70 RoCE V1 eth1

mlx5_0 1 2 0000:0000:0000:0000:0000:ffff:c0a8:0146 192.168.1.70 RoCE V2 eth1

mlx5_0 1 3 0000:0000:0000:0000:0000:ffff:c0a8:0146 192.168.1.70 RoCE V1 eth1

mlx5_0 1 4 0000:0000:0000:0000:0000:ffff:c1a8:0146 193.168.1.70 RoCE V2 eth1.100

mlx5_0 1 5 0000:0000:0000:0000:0000:ffff:c1a8:0146 193.168.1.70 RoCE V1 eth1.100

mlx5_0 1 6 1234:0000:0000:0000:0000:0000:0000:007
0

RoCE V2 eth1

mlx5_0 1 7 1234:0000:0000:0000:0000:0000:0000:007
0

RoCE V1 eth1

mlx5_0 2 0 fe80:0000:0000:0000:0202:c9ff:feb6:7c71 RoCE V2 eth2

mlx5_0 2 1 fe80:0000:0000:0000:0202:c9ff:feb6:7c71 RoCE V1 eth2

where:
Entries on port 1 index 0/1 are the default GIDs, one for each supported RoCE type
Entries on port 1 index 2/3 belong to IP address 192.168.1.70 on eth1
Entries on port 1 index 4/5 belong to IP address 193.168.1.70 on eth1.100
Packets from a QP that is associated with these GID indexes will have a VLAN header (VID=100)
Entries on port 1 index 6/7 are IPv6 GID. Packets from a QP that is associated with these GID
indexes will have an IPv6 header

RoCE Lossless Ethernet Configuration
In order to function reliably, RoCE requires a form of flow control. While it is possible to use global flow
control, this is normally undesirable, for performance reasons.
The normal and optimal way to use RoCE is to use Priority Flow Control (PFC). To use PFC, it must be
enabled on all endpoints and switches in the flow path.
For further information, please refer to RoCE Over L2 Network Enabled with PFC User Guide:
http://www.mellanox.com/related-docs/prod_software/
RoCE_with_Priority_Flow_Control_Application_Guide.pdf

Configuring SwitchX® Based Switch System

To enable RoCE, the SwitchX should be configured as follows:
Ports facing the host should be configured as access ports, and either use global pause or Port
Control Protocol (PCP) for priority flow control
Ports facing the network should be configured as trunk ports, and use Port Control Protocol
(PCP) for priority flow control
For further information on how to configure SwitchX, please refer to SwitchX User Manual

Installing and Loading the Driver

To install and load the driver:

http://www.mellanox.com/related-docs/prod_software/RoCE_with_Priority_Flow_Control_Application_Guide.pdf
http://www.mellanox.com/related-docs/prod_software/RoCE_with_Priority_Flow_Control_Application_Guide.pdf

98

1.

2.

3.

Install MLNX_OFED (See Installation section for further details).
RoCE is installed as part of mlx5 and other modules upon driver's installation.

Query for the device's information. Example:

ofed_info -s MLNX_OFED_LINUX-5.0-2.1.8.0:

Display the existing MLNX_OFED version.

ibv_devinfo
hca_id: mlx5_0
 transport: InfiniBand (0)
 fw_ver: 16.28.0578
 node_guid: ec0d:9a03:0044:3764
 sys_image_guid: ec0d:9a03:0044:3764
 vendor_id: 0x02c9
 vendor_part_id: 4121
 hw_ver: 0x0
 board_id: MT_0000000009
 phys_port_cnt: 1
 port: 1
 state: PORT_ACTIVE (4)
 max_mtu: 4096 (5)
 active_mtu: 1024 (3)
 sm_lid: 0
 port_lid: 0
 port_lmc: 0x00
 link_layer: Ethernet

Output Notes:
The port's state is:

Ethernet is in PORT_ACTIVE state

The port state can also be obtained by
running the following command:

cat /sys/class/infiniband/mlx5_0/ports/1/
state 4: ACTIVE

link_layer parameter shows that port 1 is Ethernet The link_layer can also be obtained by
running the following command:

cat /sys/class/infiniband/mlx5_0/
ports/1/link_layer Ethernet

The fw_ver parameter shows that the firmware version is
16.28.0578.

The firmware version can also be obtained
by running the following command:

cat /sys/class/infiniband/mlx5_0/
fw_ver 16.28.0578

Associating InfiniBand Ports to Ethernet Ports
The mlx5_ib driver holds a reference to the net device for getting notifications about the state of the
port, as well as using the mlx5_core driver to resolve IP addresses to MAC that are required for
address vector creation. However, RoCE traffic does not go through the mlx5_core driver; it is
completely offloaded by the hardware.

The list of the modules that will be loaded automatically upon boot can be found in the
configuration file /etc/infiniband/openib.conf.

99

1.

2.

1.

2.

3.

1.

ibdev2netdev
mlx5_0 port 1 <===> eth2

Configuring an IP Address to the netdev Interface

To configure an IP address to the netdev interface:
Configure an IP address to the netdev interface on both sides of the link.

ifconfig eth2 20.4.3.220
ifconfig eth2
eth2 Link encap:Ethernet HWaddr 00:02:C9:08:E8:11
 inet addr:20.4.3.220 Bcast:20.255.255.255 Mask:255.0.0.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Make sure that ping is working.

ping 20.4.3.219
PING 20.4.3.219 (20.4.3.219) 56(84) bytes of data.
64 bytes from 20.4.3.219: icmp_seq=1 ttl=64 time=0.873 ms
64 bytes from 20.4.3.219: icmp_seq=2 ttl=64 time=0.198 ms
64 bytes from 20.4.3.219: icmp_seq=3 ttl=64 time=0.167 ms
20.4.3.219 ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2000ms rtt min/avg/
max/mdev = 0.167/0.412/0.873/0.326 ms

Adding VLANs

To add VLANs:
Make sure that the 8021.q module is loaded.

modprobe 8021q

Add VLAN.

vconfig add eth2 7
Added VLAN with VID == 7 to IF -:eth2:-
#

Configure an IP address.

ifconfig eth2.7 7.4.3.220

Defining Ethernet Priority (PCP in 802.1q Headers)
Define Ethernet priority on the server.

100

2.

1.

2.

•

ibv_rc_pingpong -g 1 -i 2 -l 4
local address: LID 0x0000, QPN 0x1c004f, PSN 0x9daf6c, GID fe80::202:c900:
708:e799
remote address: LID 0x0000, QPN 0x1c004f, PSN 0xb0a49b, GID fe80::202:c900:
708:e811
8192000 bytes in 0.01 seconds = 4840.89 Mbit/sec
1000 iters in 0.01 seconds = 13.54 usec/iter

Define Ethernet priority on the client.

ibv_rc_pingpong -g 1 -i 2 -l 4 sw419
local address: LID 0x0000, QPN 0x1c004f, PSN 0xb0a49b, GID fe80::202:c900:
708:e811
remote address: LID 0x0000, QPN 0x1c004f, PSN 0x9daf6c, GID fe80::202:c900:
708:e799
8192000 bytes in 0.01 seconds = 4855.96 Mbit/sec
1000 iters in 0.01 seconds = 13.50 usec/iter

Using rdma_cm Tests
Use rdma_cm test on the server.

ucmatose
cmatose: starting server
initiating data transfers
completing sends
receiving data transfers
data transfers complete
cmatose: disconnecting
disconnected
test complete
return status 0
#

Use rdma_cm test on the client.

ucmatose -s 20.4.3.219
cmatose: starting client
cmatose: connecting
receiving data transfers
sending replies
data transfers complete
test complete
return status 0
#

This server-client run is without PCP or VLAN because the IP address used does not belong to a VLAN
interface. If you specify a VLAN IP address, then the traffic should go over VLAN.

Type Of Service (ToS)

Overview
The TOS field for rdma_cm sockets can be set using the rdma_set_option() API, just as it is set for
regular sockets. If a TOS is not set, the default value (0) is used. Within the rdma_cm kernel driver, the
TOS field is converted into an SL field. The conversion formula is as follows:

SL = TOS >> 5 (e.g., take the 3 most significant bits of the TOS field)

In the hardware driver, the SL field is converted into PCP by the following formula:

101

•

•
•
•

PCP = SL & 7 (take the 3 least significant bits of the TOS field)

DSCP
A new entry has been added to the RDMA-CM configfs that allows users to select default TOS for
RDMA-CM QPs. This is useful for users that want to control the TOS field without changing their code.
Other applications that set the TOS explicitly using the rdma_set_option API will continue to work as
expected to override the configfs value.
For further information about DSCP marking, refer to HowTo Set Egress ToS/DSCP on RDMA- CM QPs
Community post.

RoCE LAG
RoCE LAG is a feature meant for mimicking Ethernet bonding for IB devices and is available for dual
port cards only.
This feature is supported on RHEL and SLES systems.
RoCE LAG mode is entered when both Ethernet interfaces are configured as a bond in one of the
following modes:

active-backup (mode 1)
balance-xor (mode 2)
802.3ad (LACP) (mode 4)

Any change of bonding configuration that negates one of the above rules (i.e, bonding mode is not 1, 2
or 4, or both Ethernet interfaces that belong to the same card are not the only slaves
of the bond interface), will result in exiting RoCE LAG mode and the return to normal IB device per port
configuration.
Enabling RoCE LAG can be controlled using sysfs: /sys/bus/pci/drivers/mlx5_core/<bdf>/
roce_lag_enable (1 will enable RoCE LAG (default value) and 0 will disable it). However, note that
enablement and disablement through sysfs is non-persistent after driver restart.
Once RoCE LAG is enabled, instead of having two IB devices; mlx5_0 and mlx5_1, there will be one
device named mlx5_bond_0.
For information on how to configure RoCE LAG, refer to HowTo Configure RoCE over LAG (ConnectX-4/
ConnectX-5/ConnectX-6) Community post.

Disabling RoCE
By default, RoCE is enabled on all mlx5 devices. When RoCE is enabled, all traffic to UDP port 4791 is
treated as RoCE traffic by the device.
In case you are only interested in Ethernet (no RDMA) and wish to enable forwarding of traffic to this
port, you can disable RoCE through sysfs:

echo <0|1> > /sys/devices/{pci-bus-address}/roce_enable

The current RoCE state can be queried by sysfs:

SL affects the PCP only when the traffic goes over tagged VLAN frames.

Once RoCE is disabled, only Ethernet traffic will be supported. Therefore, there will be no GID
tables and only Raw Ethernet QPs will be supported.

https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/howto-set-egress-tos-dscp-on-rdma-cm-qps
https://community.mellanox.com/s/article/How-to-Configure-RoCE-over-LAG-ConnectX-4-ConnectX-5
https://community.mellanox.com/s/article/How-to-Configure-RoCE-over-LAG-ConnectX-4-ConnectX-5

102

•

•

•

•

•
•

•

•
•
•
•

cat /sys/devices/{pci-bus-address}/roce_enable

Enabling/Disabling RoCE on VMs via VFs
By default, when configuring VFs on the hypervisor, all VFs will be enabled with RoCE. This means they
require more OS memory (from the VM). In case you are only interested in Ethernet (no RDMA) on the
VM, and you wish to save the VM memory, you can disable RoCE on the VF from the hypervisor. In
addition, by disabling RoCE, a VM can have the capability of utilizing the RoCE UDP port (4791) for
standard UDP traffic.
For details on how to enable/disable RoCE on a VF, refer to HowTo Enable/Disable RoCE on VMs
via VFs Community post.

Force DSCP
This feature enables setting a global traffic_class value for all RC QPs, or setting a specific traffic class
based on several matching criteria.
Usage

To set a single global traffic class to be applied to all QPs, write the desired global traffic_class
value to /sys/class/infiniband/<dev>/tc/<port>/traffic_class.
Note the following:

Negative values indicate that the feature is disabled. traffic_class value can be set using
ibv_modify_qp()
Valid values range between 0 - 255

To set multiple traffic class values based on source and/or destination IPs, write the desired
rule to /sys/class/infiniband/<dev>/tc/<port>/traffic_class. For example:

echo "tclass=16,src_ip=1.1.1.2,dst_ip=1.1.1.0/24" > /sys/class/infiniband/
mlx5_0/tc/1/traffic_class

Note: Adding "tclass" prefix to tclass value is optional.

In the example above, traffic class 16 will be set to any QP with source IP 1.1.1.2 and destination IP
1.1.1.0/24.
Note that when setting a specific traffic class, the following rule precedence will apply:

If a global traffic class value is set, it will be applied to all QPs
If no global traffic class value is set, and there is a rule with matching source and destination
IPs applicable to at least one QP, it will be applied
Rules only with matching source and/or destination IPs have no defined precedence over other
rules with matching source and/or destination IPs

Notes:
A mask can be provided when using destination IPv4 addresses
The rule precedence is not affected by the order in which rules are inserted
Overlapping rules are entirely up to the administrator.
"tclass=-1" will remove the rule from the database

The ToS field is 8 bits, while the DSCP field is 6 bits. To set a DSCP value of X, you need to
multiply this value by 4 (SHIFT 2). For example, to set DSCP value of 24, set the ToS bit to 96
(24x4=96).

https://community.mellanox.com/s/article/HowTo-Enable-Disable-RoCE-on-VMs-via-VFs-ConnectX-4-onwards
https://community.mellanox.com/s/article/HowTo-Enable-Disable-RoCE-on-VMs-via-VFs-ConnectX-4-onwards

103

1.

2.

3.
a.

4.

5.

Force Time to Live (TTL)
This feature enables setting a global TTL value for all RC QPs.
Write the desired TTL value to /sys/class/infiniband/<dev>/tc/<port>/ttl. Valid values range between 0 -
255

Flow Control

Priority Flow Control (PFC)
Priority Flow Control (PFC) IEEE 802.1Qbb applies pause functionality to specific classes of traffic on
the Ethernet link. For example, PFC can provide lossless service for the RoCE traffic and best-effort
service for the standard Ethernet traffic. PFC can provide different levels of service to specific classes
of Ethernet traffic (using IEEE 802.1p traffic classes).

Configuring PFC on ConnectX-4 and above
Enable PFC on the desired priority:

mlnx_qos -i <ethX> --pfc <0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>,<0/1>

Example (Priority=4):

mlnx_qos -i eth1 --pfc 0,0,0,0,1,0,0,0

Create a VLAN interface:

vconfig add <ethX> <VLAN_ID>

Example (VLAN_ID=5):

vconfig add eth1 5

Set egress mapping:
For Ethernet traffic:

vconfig set_egress_map <vlan_einterface> <skprio> <up>

Example (skprio=3, up=5):

vconfig set_egress_map eth1.5 3 5

Create 8 Traffic Classes (TCs):

tc_wrap.py -i <interface>

Enable PFC on the switch.
For information on how to enable PFC on your respective switch, please refer to Switch FC/PFC
Configuration sections in the following Mellanox Community page: https://
community.mellanox.com/docs/DOC-2283.

https://community.mellanox.com/docs/DOC-2283
https://community.mellanox.com/docs/DOC-2283

104

1.

2.

3.

•

•

1.
2.

a.
b.

PFC Configuration Using LLDP DCBX

PFC Configuration on Hosts

PFC Auto-Configuration Using LLDP Tool in the OS
Start lldpad daemon on host.

lldpad -d Or
service lldpad start

Send lldpad packets to the switch.

lldptool set-lldp -i <ethX> adminStatus=rxtx ;
lldptool -T -i <ethX> -V sysName enableTx=yes;
lldptool -T -i <ethX> -V portDesc enableTx=yes ;
lldptool -T -i <ethX> -V sysDesc enableTx=yes
lldptool -T -i <ethX> -V sysCap enableTx=yess
lldptool -T -i <ethX> -V mngAddr enableTx=yess
lldptool -T -i <ethX> -V PFC enableTx=yes;
lldptool -T -I <ethX> -V CEE-DCBX enableTx=yes;

Set the PFC parameters.

For the CEE protocol, use dcbtool:

dcbtool sc <ethX> pfc pfcup:<xxxxxxxx>

Example:

dcbtool sc eth6 pfc pfcup:01110001

where:
[pfcup:xxx
xxxxx]

Enables/disables priority flow control. From left to right (priorities 0-7) - x can be
equal to either 0 or 1. 1 indicates that the priority is configured to transmit priority
pause.

For IEEE protocol, use lldptool:

lldptool -T -i <ethX> -V PFC enabled=x,x,x,x,x,x,x,x

Example:

lldptool -T -i eth2 -V PFC enabled=1,2,4

where:
enab
led

Displays or sets the priorities with PFC enabled. The set attribute takes a comma-
separated list of priorities to enable, or the string none to disable all priorities.

PFC Auto-Configuration Using LLDP in the Firmware (for mlx5 driver)
There are two ways to configure PFC and ETS on the server:

Local Configuration - Configuring each server manually.
Remote Configuration - Configuring PFC and ETS on the switch, after which the switch will pass
the configuration to the server using LLDP DCBX TLVs.
There are two ways to implement the remote configuration using mlx5 driver:

Configuring the adapter firmware to enable DCBX.
Configuring the host to enable DCBX.

105

1.

2.

3.

4.

5.

•
•
•
•
•
•
•
•
•

For further information on how to auto-configure PFC using LLDP in the firmware, refer to the HowTo
Auto-Config PFC and ETS on ConnectX-4 via LLDP DCBXCommunity post.

PFC Configuration on Switches

In order to enable DCBX, LLDP should first be enabled:

switch (config) # lldp
show lldp interfaces ethernet remote

Add DCBX to the list of supported TLVs per required interface.
For IEEE DCBX:

switch (config) # interface 1/1
switch (config interface ethernet 1/1) # lldp tlv-select dcbx

For CEE DCBX:

switch (config) # interface 1/1
switch (config interface ethernet 1/1) # lldp tlv-select dcbx-cee

[Optional] Application Priority can be configured on the switch, with the required ethertype and
priority. For example, IP packet, priority 1:

switch (config) # dcb application-priority 0x8100 1

Make sure PFC is enabled on the host (for enabling PFC on the host, refer to PFC Configuration
on Hosts section above). Once it is enabled, it will be passed in the LLDP TLVs.
Enable PFC with the desired priority on the Ethernet port.

dcb priority-flow-control enable force
dcb priority-flow-control priority <priority> enable
interface ethernet <port> dcb priority-flow-control mode on force

Example - Enabling PFC with priority 3 on port 1/1:

dcb priority-flow-control enable force
dcb priority-flow-control priority 3 enable
interface ethernet 1/1 dcb priority-flow-control mode on force

Priority Counters
MLNX_OFED driver supports several ingress and egress counters per priority. Run ethtool -S to get the
full list of port counters.

ConnectX-4 Counters

Rx and Tx Counters:
Packets
Bytes
Octets
Frames
Pause
Pause frames
Pause Duration
Pause Transition

ConnectX-4 Example

https://community.mellanox.com/s/article/howto-auto-config-pfc-and-ets-on-connectx-4-via-lldp-dcbx
https://community.mellanox.com/s/article/howto-auto-config-pfc-and-ets-on-connectx-4-via-lldp-dcbx
https://community.mellanox.com/docs/DOC-2487

106

•

•

•

•

ethtool -S eth35 | grep prio4
 prio4_rx_octets: 62147780800
 prio4_rx_frames: 14885696
 prio4_tx_octets: 0
 prio4_tx_frames: 0
 prio4_rx_pause: 0
 prio4_rx_pause_duration: 0
 prio4_tx_pause: 26832
 prio4_tx_pause_duration: 14508
 prio4_rx_pause_transition: 0

Note: The Pause counters in ConnectX-4 are visible via ethtool only for priorities on which PFC is
enabled.

PFC Storm Prevention

PFC storm prevention enables toggling between default and auto modes.
The stall prevention timeout is configured to 8 seconds by default. Auto mode sets the stall prevention
timeout to be 100 msec.
The feature can be controlled using sysfs in the following directory: /sys/class/net/eth*/settings/
pfc_stall_prevention

To query the PFC stall prevention mode:

cat /sys/class/net/eth*/settings/pfc_stall_prevention

Example

$ cat /sys/class/net/ens6/settings/pfc_stall_prevention
default

To configure the PFC stall prevention mode:

Echo "auto"/"default" > /sys/class/net/eth*/settings/pfc_stall_prevention

The following two counters were added to the ethtool -S:
tx_Pause_storm_warning_events - when the device is stalled for a period longer than a pre-
configured watermark, the counter increases, allowing the debug utility an insight into current
device status.
tx_pause_storm_error_events - when the device is stalled for a period longer than a pre-
configured timeout, the pause transmission is disabled, and the counter increase.

Dropless Receive Queue (RQ)

Dropless RQ feature enables the driver to notify the FW when SW receive queues are overloaded. This
scenario takes place when the handling of SW receive queue is slower than the handling of the HW
receive queues.
When this feature is enabled, a packet that is received while the receive queue is full will not be

This feature is applicable to ConnectX-4 and above adapter cards family only.

This feature is applicable to ConnectX-4 and above adapter cards family only.

107

1.

2.

3.

•

immediately dropped. The FW will accumulate these packets assuming posting of new WQEs will
resume shortly. If received WQEs are not posted after a certain period of time, out_of_buffer counter
will increase, indicating that the packet has been dropped.
This feature is disabled by default. In order to activate it, ensure that Flow Control feature is also
enabled.

To enable the feature, run:

ethtool --set-priv-flags ens6 dropless_rq on

To get the feature state, run:

ethtool --show-priv-flags DEVNAME

Output example:

Private flags for DEVNAME:
rx_cqe_moder : on
rx_cqe_compress: off
sniffer : off
dropless_rq : off
hw_lro : off

To disable the feature, run:

ethtool --set-priv-flags ens6 dropless_rq off

Explicit Congestion Notification (ECN)
ECN is an extension to the IP protocol. It allows reliable communication by notifying all ends of
communication when congestion occurs. This is done without dropping packets.
Please note that this feature requires all nodes in the path (nodes, routers etc) between the
communicating nodes to support ECN to ensure reliable communication. ECN is marked as 2 bits in
the traffic control IP header. This ECN implementation refers to RoCE v2.

Enabling ECN

To enable ECN on the hosts:
Enable ECN in sysfs.

/sys/class/net/<interface>/<protocol>/ecn_<protocol>_enable =1

Query the attribute.

cat /sys/class/net/<interface>/ecn/<protocol>/params/<requested attribute>

Modify the attribute.

echo <value> /sys/class/net/<interface>/ecn/<protocol>/params/<requested
attribute>

ECN supports the following algorithms:
r_roce_ecn_rp - Reaction point

108

•

•
•
•

r_roce_ecn_np - Notification point

Each algorithm has a set of relevant parameters and statistics, which are defined per device, per port,
per priority.

To query whether ECN is enabled per Priority X:

cat /sys/class/net/<interface>/ecn/<protocol>/enable/X

To read ECN configurable parameters:

cat /sys/class/net/<interface>/ecn/<protocol>/requested attributes

To enable ECN for each priority per protocol:

echo 1 > /sys/class/net/<interface>/ecn/<protocol>/enable/X

To modify ECN configurable parameters:

echo <value> > /sys/class/net/<interface>/ecn/<protocol>/requested attributes

where:
X: priority {0..7}
protocol: roce_rp / roce_np
requested attributes: Next Slide for each protocol.

RSS Support

RSS Hash Function
The device has the ability to use XOR as the RSS distribution function, instead of the default Toplitz
function.
The XOR function can be better distributed among driver's receive queues in a small number of
streams, where it distributes each TCP/UDP stream to a different queue.
MLNX_OFED provides the following option to change the working RSS hash function from Toplitz to
XOR, and vice-versa:
Through sysfs, located at: /sys/class/net/eth*/settings/hfunc.

To query the operational and supported hash functions:

cat /sys/class/net/eth*/settings/hfunc

Example:

cat /sys/class/net/eth2/settings/hfunc
Operational hfunc: toeplitz
Supported hfuncs: xor toeplitz

 To change the operational hash function:

echo xor > /sys/class/net/eth*/settings/hfunc

109

•
•
•

RSS Verbs Support
Receive Side Scaling (RSS) technology allows spreading incoming traffic between different receive
descriptor queues. Assigning each queue to different CPU cores allows better load balancing of the
incoming traffic and improves performance.
This technology was extended to user space by the verbs layer and can be used for RAW ETH QP.

RSS Flow Steering
Steering rules classify incoming packets and deliver a specific traffic type (e.g. TCP/UDP, IP only) or a
specific flow to "RX Hash" QP. "RX Hash" QP is responsible for spreading the traffic it handles between
the Receive Work Queues using RX hash and Indirection Table. The Receive Work Queue can point to
different CQs that can be associated with different CPU cores.

Verbs
The below verbs should be used to achieve this task in both control and data path. Details per verb
should be referenced from its man page.

ibv_create_wq, ibv_modify_wq, ibv_destory_wq
ibv_create_rwq_ind_table, ibv_destroy_rwq_ind_table
ibv_create_qp_ex with specific RX configuration to create the "RX hash" QP

Time-Stamping

Time-Stamping Service
Time-stamping is the process of keeping track of the creation of a packet. A time-stamping service
supports assertions of proof that a datum existed before a particular time. Incoming packets are time-
stamped before they are distributed on the PCI depending on the congestion in the PCI buffers.
Outgoing packets are time-stamped very close to placing them on the wire.

Enabling Time-Stamping
Time-stamping is off by default and should be enabled before use.

To enable time-stamping for a socket:
Call setsockopt() with SO_TIMESTAMPING and with the following flags:
SOF_TIMESTAMPING_TX_HARDWAR
E:

try to obtain send time-stamp in hardware

SOF_TIMESTAMPING_TX_SOFTWARE
:

if SOF_TIMESTAMPING_TX_HARDWARE is off or fails, then do it in
software

SOF_TIMESTAMPING_RX_HARDWAR
E:

return the original, unmodified time-stamp as generated by the
hardware

SOF_TIMESTAMPING_RX_SOFTWARE
:

if SOF_TIMESTAMPING_RX_HARDWARE is off or fails, then do it in
software

SOF_TIMESTAMPING_RAW_HARDWA
RE:

return original raw hardware time-stamp

110

•

•

SOF_TIMESTAMPING_SYS_HARDWA
RE:

return hardware time-stamp transformed into the system time base

SOF_TIMESTAMPING_SOFTWARE: return system time-stamp generated in software

SOF_TIMESTAMPING_TX/RX determine how time-stamps are generated

SOF_TIMESTAMPING_RAW/SYS determine how they are reported

To enable time-stamping for a net device:
Admin privileged user can enable/disable time stamping through calling ioctl (sock, SIOCSH-
WTSTAMP, &ifreq) with the following values:

Send side time sampling, enabled by ifreq.hwtstamp_config.tx_type when:

/* possible values for hwtstamp_config->tx_type */
enum hwtstamp_tx_types {
 /*
 * No outgoing packet will need hardware time stamping;
 * should a packet arrive which asks for it, no hardware
 * time stamping will be done.
 */
 HWTSTAMP_TX_OFF,

 /*
 * Enables hardware time stamping for outgoing packets;
 * the sender of the packet decides which are to be
 * time stamped by setting %SOF_TIMESTAMPING_TX_SOFTWARE
 * before sending the packet.
 */
 HWTSTAMP_TX_ON,
/*
 * Enables time stamping for outgoing packets just as
 * HWTSTAMP_TX_ON does, but also enables time stamp insertion
 * directly into Sync packets. In this case, transmitted Sync
 * packets will not received a time stamp via the socket error
 * queue.
 */
 HWTSTAMP_TX_ONESTEP_SYNC,
};
Note: for send side time stamping currently only HWTSTAMP_TX_OFF and
HWTSTAMP_TX_ON are supported.

Receive side time sampling, enabled by ifreq.hwtstamp_config.rx_filter when:

111

/* possible values for hwtstamp_config->rx_filter */
enum hwtstamp_rx_filters {
 /* time stamp no incoming packet at all */
 HWTSTAMP_FILTER_NONE,

 /* time stamp any incoming packet */
 HWTSTAMP_FILTER_ALL,
 /* return value: time stamp all packets requested plus some others */
 HWTSTAMP_FILTER_SOME,

 /* PTP v1, UDP, any kind of event packet */
 HWTSTAMP_FILTER_PTP_V1_L4_EVENT,
 /* PTP v1, UDP, Sync packet */
 HWTSTAMP_FILTER_PTP_V1_L4_SYNC,
 /* PTP v1, UDP, Delay_req packet */
 HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ,
 /* PTP v2, UDP, any kind of event packet */
 HWTSTAMP_FILTER_PTP_V2_L4_EVENT,
 /* PTP v2, UDP, Sync packet */
 HWTSTAMP_FILTER_PTP_V2_L4_SYNC,
 /* PTP v2, UDP, Delay_req packet */
 HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ,

 /* 802.AS1, Ethernet, any kind of event packet */
 HWTSTAMP_FILTER_PTP_V2_L2_EVENT,
 /* 802.AS1, Ethernet, Sync packet */
 HWTSTAMP_FILTER_PTP_V2_L2_SYNC,
 /* 802.AS1, Ethernet, Delay_req packet */
 HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ,

 /* PTP v2/802.AS1, any layer, any kind of event packet */
 HWTSTAMP_FILTER_PTP_V2_EVENT,
 /* PTP v2/802.AS1, any layer, Sync packet */
 HWTSTAMP_FILTER_PTP_V2_SYNC,
 /* PTP v2/802.AS1, any layer, Delay_req packet */
 HWTSTAMP_FILTER_PTP_V2_DELAY_REQ,
};
Note: for receive side time stamping currently only HWTSTAMP_FILTER_NONE
and
HWTSTAMP_FILTER_ALL are supported.

Getting Time-Stamping
Once time stamping is enabled time stamp is placed in the socket Ancillary data. recvmsg() can be
used to get this control message for regular incoming packets. For send time stamps the outgoing
packet is looped back to the socket's error queue with the send time-stamp(s) attached. It can
be received with recvmsg (flags=MSG_ERRQUEUE). The call returns the original outgoing packet data
including all headers prepended down to and including the link layer, the scm_time-stamping control
message and a sock_extended_err control message with ee_errno==ENOMSG and
ee_origin==SO_EE_ORIGIN_TIMESTAMPING. A socket with such a pending bounced packet is ready for
reading as far as select() is concerned. If the outgoing packet has to be fragmented, then only the first
fragment is time stamped and returned to the sending socket.

Time Stamping Capabilities via ethtool

To display Time Stamping capabilities via ethtool:
Show Time Stamping capabilities:

When time-stamping is enabled, VLAN stripping is disabled. For more info please refer to
Documentation/networking/timestamping.txt in kernel.org

http://kernel.org

112

ethtool -T eth<x>

Example:

ethtool -T eth0
Time stamping parameters for p2p1:
Capabilities:
 hardware-transmit
(SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit
(SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive
(SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive
(SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock
(SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock
(SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
off (HWTSTAMP_TX_OFF)
on (HWTSTAMP_TX_ON)

Hardware Receive Filter Modes:
none (HWTSTAMP_FILTER_NONE)
all (HWTSTAMP_FILTER_ALL)

For more details on PTP Hardware Clock, please refer to: https://www.kernel.org/doc/Documentation/
ptp/ptp.txt

Steering PTP Traffic to Single RX Ring
As a result of Receive Side Steering (RSS) PTP traffic coming to UDP ports 319 and 320, it may reach
the user space application in an out of order manner. In order to prevent this, PTP traffic needs to be
steered to single RX ring using ethtool.
Example:

ethtool -u ens7
8 RX rings available
Total 0 rules
ethtool -U ens7 flow-type udp4 dst-port 319 action 0 loc 1
ethtool -U ens7 flow-type udp4 dst-port 320 action 0 loc 0
ethtool -u ens7
8 RX rings available
Total 2 rules
Filter: 0
Rule Type: UDP over IPv4
Src IP addr: 0.0.0.0 mask: 255.255.255.255
Dest IP addr: 0.0.0.0 mask: 255.255.255.255
TOS: 0x0 mask: 0xff
Src port: 0 mask: 0xffff
Dest port: 320 mask: 0x0
Action: Direct to queue 0
Filter: 1
Rule Type: UDP over IPv4
Src IP addr: 0.0.0.0 mask: 255.255.255.255
Dest IP addr: 0.0.0.0 mask: 255.255.255.255
TOS: 0x0 mask: 0xff
Src port: 0 mask: 0xffff
Dest port: 319 mask: 0x0
Action: Direct to queue 0

http://www.kernel.org/doc/Documentation/ptp/ptp.txt
http://www.kernel.org/doc/Documentation/ptp/ptp.txt
http://www.kernel.org/doc/Documentation/ptp/ptp.txt
http://www.kernel.org/doc/Documentation/ptp/ptp.txt

113

RoCE Time-Stamping
RoCE Time-Stamping allows you to stamp packets when they are sent to the wire/received from the
wire. The time-stamp is given in raw hardware cycles but could be easily converted into hardware
referenced nanoseconds based time. Additionally, it enables you to query the hardware for the
hardware time, thus stamp other application's event and compare time.

Query Capabilities
Time-stamping is available if and only the hardware reports it is capable of reporting it. To verify
whether RoCE Time-Stamping is available, run ibv_query_device_ex.
For further information, please see ibv_query_device_ex manual page.

Creating a Time-Stamping Completion Queue
To get time stamps, a suitable extended Completion Queue (CQ) must be created via a special call to
ibv_create_cq_ex verb.
For further information, please see ibv_create_cq_ex manual page.

Querying the Hardware Time
Querying the hardware for time is done via the ibv_query_rt_values_ex verb. For example:
For further information, please see ibv_query_rt_values_ex manual page.

One Pulse Per Second (1PPS)
1PPS is a time synchronization feature that allows the adapter to be able to send or receive 1 pulse per
second on a dedicated pin on the adapter card using an SMA connector (SubMiniature version A). Only
one pin is supported and could be configured as 1PPS in or 1PPS out.
For further information, refer to HowTo Test 1PPS on Mellanox Adapters Community post.

Flow Steering
Flow steering is a new model which steers network flows based on flow specifications to specific QPs.
Those flows can be either unicast or multicast network flows. In order to maintain flexibility, domains
and priorities are used. Flow steering uses a methodology of flow attribute, which is a combination of
L2-L4 flow specifications, a destination QP and a priority. Flow steering rules may be inserted either by
using ethtool or by using InfiniBand verbs. The verbs abstraction uses different terminology from the
flow attribute (ibv_flow_attr), defined by a combination of specifications (struct ibv_flow_spec_*).

Flow Steering Support
All flow steering features are enabled in the supported adapter cards.
Flow Steering support in InfiniBand is determined according to the MANAGED_FLOW_STEERING flag.

Flow Domains and Priorities
Flow steering defines the concept of domain and priority. Each domain represents a user agent that
can attach a flow. The domains are prioritized. A higher priority domain will always supersede a lower

Time Stamping in not available when CQE zipping is used.

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_create_cq_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_rt_values_ex.3
https://community.mellanox.com/s/article/How-To-Test-1PPS-on-Mellanox-Adapters

114

•

•

•
•

•

•

•

•

•

priority domain when their flow specifications overlap. Setting a lower priority value will result in a
higher priority.
In addition to the domain, there is a priority within each of the domains. Each domain can have at most
2^12 priorities in accordance with its needs.
The following are the domains at a descending order of priority:

User Verbs allows a user application QP to be attached to a specified flow when using
ibv_create_flow and ibv_destroy_flow verbs

ibv_create_flow

struct ibv_flow *ibv_create_flow(struct ibv_qp *qp, struct
ibv_flow_attr
*flow)

Input parameters:
struct ibv_qp - the attached QP.
struct ibv_flow_attr - attaches the QP to the flow specified. The flow contains
mandatory control parameters and optional L2, L3 and L4 headers. The optional
headers are detected by setting the size and num_of_specs fields:
struct ibv_flow_attr can be followed by the optional flow headers structs:

struct ibv_flow_spec_eth
struct ibv_flow_spec_ipv4
struct ibv_flow_spec_tcp_udp
struct ibv_flow_spec_ipv6

For further information, please refer to the ibv_create_flow man page.

ibv_destroy_flow

int ibv_destroy_flow(struct ibv_flow *flow_id)

Input parameters:
ibv_destroy_flow requires struct ibv_low which is the return value of
ibv_create_flow in case of success.
Output parameters:
Returns 0 on success, or the value of errno on failure.
For further information, please refer to the ibv_destroy_flow man page.

Ethtool
Ethtool domain is used to attach an RX ring, specifically its QP to a specified flow. Please refer to the
most recent ethtool man page for all the ways to specify a flow.
Examples:

ethtool –U eth5 flow-type ether dst 00:11:22:33:44:55 loc 5 action 2
All packets that contain the above destination MAC address are to be steered into rx-ring 2 (its
underlying QP), with priority 5 (within the ethtool domain)
ethtool –U eth5 flow-type tcp4 src-ip 1.2.3.4 dst-port 8888 loc 5 action 2
All packets that contain the above destination IP address and source port are to be steered into
rx- ring 2. When destination MAC is not given, the user's destination MAC is filled automatically.
ethtool -U eth5 flow-type ether dst 00:11:22:33:44:55 vlan 45 m 0xf000 loc 5 action 2
All packets that contain the above destination MAC address and specific VLAN are steered into
ring 2. Please pay attention to the VLAN's mask 0xf000. It is required in order to add such a rule.
ethtool –u eth5
Shows all of ethtool's steering rule

115

•

•

When configuring two rules with the same priority, the second rule will overwrite the first one, so this
ethtool interface is effectively a table. Inserting Flow Steering rules in the kernel requires support from
both the ethtool in the user space and in kernel (v2.6.28).

Accelerated Receive Flow Steering (aRFS)

Receive Flow Steering (RFS) and Accelerated Receive Flow Steering (aRFS) are kernel features
currently available in most distributions. For RFS, packets are forwarded based on the location of the
application consuming the packet. aRFS boosts the speed of RFS by adding support for the hardware.
By usingaRFS(unlike RFS), the packets are directed to a CPU that is local to the thread running the
application.
aRFSis an in-kernel-logic responsible for load balancing between CPUs by attaching flows to CPUs
that are used by flow's owner applications. This domain allows the aRFS mechanism to use the flow
steering infrastructure to support the aRFS logic by implementing the ndo_rx_flow_steer, which, in
turn, calls the underlying flow steering mechanism with the aRFS domain.

To configure RFS:
Configure the RFS flow table entries (globally and per core).
Note: The functionality remains disabled until explicitly configured (by default it is 0).

The number of entries in the global flow table is set as follows:

The number of entries in the per-queue flow table are set as follows:

Example:

echo 32768 > /proc/sys/net/core/rps_sock_flow_entries
for f in /sys/class/net/ens6/queues/rx-*/rps_flow_cnt; do echo 32768 > $f;
done

To Configure aRFS:
The aRFS feature requires explicit configuration in order to enable it. Enabling the aRFS requires
enabling the 'ntuple' flag via the ethtool.
For example, to enable ntuple for eth0, run:

ethtool -K eth0 ntuple on

aRFS requires the kernel to be compiled with the CONFIG_RFS_ACCEL option. This option is available in
kernels 2.6.39 and above. Furthermore, aRFS requires Device Managed Flow Steering support.

/proc/sys/net/core/rps_sock_flow_entries

/sys/class/net/<dev>/queues/rx-<n>/rps_flow_cnt

RFS cannot function if LRO is enabled. LRO can be disabled via ethtool.

116

•

•

1.

2.

Flow Steering Dump Tool
The mlx_fs_dump is a python tool that prints the steering rules in a readable manner. Python v2.7 or
above, as well as pip, anytree and termcolor libraries are required to be installed on the host.
Running example:

./ofed_scripts/utils/mlx_fs_dump -d /dev/mst/mt4115_pciconf0
FT: 9 (level: 0x18, type: NIC_RX)
+-- FG: 0x15 (MISC)
 |-- FTE: 0x0 (FWD) to (TIR:0x7e) out.ethtype:IPv4 out.ip_prot:UDP
out.udp_dport:0x140
 +-- FTE: 0x1 (FWD) to (TIR:0x7e) out.ethtype:IPv4 out.ip_prot:UDP
out.udp_dport:0x13f
...

For further information on the mlx_fs_dump tool, please refer to mlx_fs_dump Community post.

Wake-on-LAN (WoL)
Wake-on-LAN (WoL) is a technology that allows a network professional to remotely power on a
computer or to wake it up from sleep mode.

To enable WoL:

ethtool -s <interface> wol g

To get WoL:

ethtool <interface> | grep Wake-on Wake-on: g

Where:
"g" is the magic packet activity.

Hardware Accelerated 802.1ad VLAN (Q-in-Q Tunneling)
Q-in-Q tunneling allows the user to create a Layer 2 Ethernet connection between two servers. The
user can segregate a different VLAN traffic on a link or bundle different VLANs into a single VLAN. Q-
in-Q tunneling adds a service VLAN tag before the user's 802.1Q VLAN tags.
For Q-in-Q support in virtualized environments (SR-IOV), please refer to "Q-in-Q Encapsulation per VF
in Linux (VST)".

To enable device support for accelerated 802.1ad VLAN:
Turn on the new ethtool private flag "phv-bit" (disabled by default).

$ ethtool --set-priv-flags eth1 phv-bit on

Enabling this flag sets the phv_en port capability.
Change the interface device features by turning on the ethtool device feature "tx-vlan- stag-hw-
insert" (disabled by default).

$ ethtool -K eth1 tx-vlan-stag-hw-insert on

https://community.mellanox.com/s/article/mlx-fs-dump

117

1.

2.

Once the private flag and the ethtool device feature are set, the device will be ready for 802.1ad
VLAN acceleration.

VLAN Stripping in Linux Verbs

VLAN stripping adds access to the device's ability to offload the Customer VLAN (cVLAN) header
stripping from an incoming packet, thus achieving acceleration of VLAN handing in receive flow.
It is configured per WQ option. You can either enable it upon creation or modify it later using the
appropriate verbs (ibv_create_wq/ibv_modify_wq).

Dump Configuration
This feature helps dumping driver and firmware configuration using ethtool. It creates a backup of the
configuration files into a specified dump file.

Dump Parameters (Bitmap Flag)
The following bitmap parameters are used to set the type of dump:
Bitmap Parameters

Value Description

1 MST dump

2 Ring dump (Software context information for SQs, EQs, RQs, CQs)

3 MST dump + Ring dump (1+2)

4 Clear this parameter

Configuration
In order to configure this feature, follow the steps below:

Set the dump bitmap parameter by running -W (uppercase) with the desired bitmap parameter
value (see Bitmap Parameters table above). In the following example, the bitmap parameter
value is 3.

ethtool -W ens1f0 3

Dump the file by running -w (lowercase) with the desired configuration file name.

The "phv-bit" private flag setting is available for the Physical Function (PF) only.
The Virtual Function (VF) can use the VLAN acceleration by setting the "tx-vlan-stag-
hw-insert" parameter only if the private flag "phv-bit" is enabled by the PF. If the PF
enables/disables the "phv-bit" flag after the VF driver is up, the configuration will take
place only after the VF driver is restarted.

This capability is now accessible from userspace using the verbs.

118

3.

4.

5.
a.

b.

ethtool -w ens1f0 data /tmp/dump.bin

[Optional] To get the bitmap parameter value, version and size of the dump, run the command
above without the file name.

ethtool -w ens1f0
flag: 3, version: 1, length: 4312

To open the dump file, run:

mlnx_dump_parser -f /tmp/dump.bin -m mst_dump_demo.txt -r
ring_dump_demo.txt
Version: 1 Flag: 3 Number of blocks: 123 Length 327584
MCION module number: 0 status: | present |
DRIVER VERSION: 1-23 (03 Mar 2015)
DEVICE NAME 0000:81:00.0:ens1f0
Parsing Complete!

where:
-f For the file to be parsed (the file that was just created)

-m For the mst dump file

-r For the ring dump file

For further information, refer to HowTo Dump Driver Configuration (via ethtool) Community
post.
Output:

mlnx_dump_parser -f /tmp/dump.bin -m mst_dump_demo.txt -r
ring_dump_demo.txt
Version: 1 Flag: 3 Number of blocks: 123 Length 327584
MCION module number: 0 status: | present |
DRIVER VERSION: 1-23 (03 Mar 2015)
DEVICE NAME 0000:81:00.0:ens1f0
Parsing Complete!

Open the files.
The MST dump file will look as follows. In order to analyze it, contact Mellanox Support
at support@mellanox.com.

cat mst_dump_demo.txt
0x00000000 0x01002000
0x00000004 0x00000000
0x00000008 0x00000000
0x0000000c 0x00000000
0x00000010 0x00000000
0x00000014 0x00000000
0x00000018 0x00000000
...

The Ring dump file can help developers debug ring-related issues, and it looks as
follows:

https://community.mellanox.com/s/article/howto-dump-driver-configuration--via-ethtool-x
mailto:support@mellanox.com

119

cat ring_dump_demo.txt
SQ TYPE: 3, WQN: 102, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024...
SQ TYPE: 3, WQN: 102, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024, WQE_NUM:
65536, GROUP_IP: 0
CQ TYPE: 5, WQN: 20, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024, WQE_NUM:
1024, GROUP_IP: 0
RQ TYPE: 4, WQN: 103, PI: 15, CI: 0, STRIDE: 5, SIZE: 16, WQE_NUM:
512, GROUP_IP: 0
CQ TYPE: 5, WQN: 21, PI: 0, CI: 0, STRIDE: 6, SIZE: 16384, WQE_NUM:
16384, GROUP_IP: 0
EQ TYPE: 6, CI: 1, SIZE: 0, IRQN: 109, EQN: 19, NENT: 2048, MASK: 0,
INDEX: 0, GROUP_ID: 0
SQ TYPE: 3, WQN: 106, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024, WQE_NUM:
65536, GROUP_IP: 1
CQ TYPE: 5, WQN: 23, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024, WQE_NUM:
1024, GROUP_IP: 1
RQ TYPE: 4, WQN: 107, PI: 15, CI: 0, STRIDE: 5, SIZE: 16, WQE_NUM:
512, GROUP_IP: 1
CQ TYPE: 5, WQN: 24, PI: 0, CI: 0, STRIDE: 6, SIZE: 16384, WQE_NUM:
16384, GROUP_IP: 1
EQ TYPE: 6, CI: 1, SIZE: 0, IRQN: 110, EQN: 20, NENT: 2048, MASK: 0,
INDEX: 1, GROUP_ID: 1
SQ TYPE: 3, WQN: 110, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024, WQE_NUM:
65536, GROUP_IP: 2
CQ TYPE: 5, WQN: 26, PI: 0, CI: 0, STRIDE: 6, SIZE: 1024, WQE_NUM:
1024, GROUP_IP: 2
RQ TYPE: 4, WQN: 111, PI: 15, CI: 0, STRIDE: 5, SIZE: 16, WQE_NUM:
512, GROUP_IP: 2
CQ TYPE: 5, WQN: 27, PI: 0, CI: 0, STRIDE: 6, SIZE: 16384, WQE_NUM:
16384, GROUP_IP: 2
...

Local Loopback Disable
Local Loopback Disable feature allows users to force the disablement of local loopback on the virtual
port (vport). This disables both unicast and mutlicast loopback in the hardware.

To enable Local Loopback Disable, run the following command:

echo 1 > /sys/class/net/<ifname>/settings/force_local_lb_disable"

To disable Local Loopback Disable, run the following command:

echo 0 > /sys/class/net/<ifname>/settings/force_local_lb_disable"

Kernel Transport Layer Security (kTLS) Offloads

When turned off, the driver configures the loopback mode according to its own logic.

This feature is supported on ConnectX-6 Dx crypto cards only.

120

1.
2.
3.
4.

5.

•
•

Overview
Transport Layer Security (TLS) is a widely-deployed protocol used for securing TCP connections on the
Internet. TLS is also a required feature for HTTP/2, the latest web standard. Kernel implementation of
TLS (kTLS) provides new opportunities for offloading the protocol into the hardware.
TLS data-path offload allows the NIC to accelerate encryption, decryption and authentication of AES-
GCM. TLS offload handles data as it goes through the device without storing any data, but only updating
context. If the packet cannot be encrypted/decrypted by the device, then a software fallback handles the
packet.

Establishing a kTLS Connection
To avoid unnecessary complexity in the kernel, the TLS handshake is kept in the user space. A full TLS
connection using the socket is done using the following scheme:

Call connect() or accept() on a standard TCP file descriptor.
Use a user space TLS library to complete a handshake.
Create a new KTLS socket file descriptor.
Extract the TLS Initialization Vectors (IVs), session keys, and sequence IDs from the TLS library.
Use the setsockopt function on the kTLS file descriptor (FD) to pass them to the kernel.
Use standard read(), write(), sendfile() and splice() system calls on the KTLS FD.

Drivers can offer Tx and Rx packet encryption/decryption offload from the kernel into the NIC
hardware. Upon receipt of a non-data TLS message (a control message), the kTLS socket returns an
error, and the message is left on the original TCP socket instead. The kTLS socket is automatically
unattached. Transfer of control back to the original encrypted FD is done by calling getsockopt to
receive the current sequence numbers, and inserting them into the TLS library.

Kernel Support
For support in the kernel, make sure the following flags are set as follows.

CONFIG_TLS=y
CONFIG_TLS_DEVICE=y | m

Configuring kTLS Offloads

To enable kTLS Tx offload, run:

ethtool -K <ifs> tls-hw-tx-offload on

o enable kTLS Rx offload, run:

ethtool -K <ifs> tls-hw-rx-offload on

For further information on TLS offloads, please visit the following kernel documentation:

For kTLS offloads with OFED drivers, kernel TLS module (kernel/net/tls) must be aligned to ke
rnel.org 5.3 or later.

http://kernel.org/
http://kernel.org/

121

•
•

•

•

•
•
•
•

https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls

IPsec Crypto Offload

Overview and Configuration
IPsec crypto offload feature, also known as IPsec inline offload or IPsec aware offload feature enables
the user to offload IPsec crypto encryption and decryption operations to the hardware.
Note that the hardware implementation only supports AES-GCM encryption scheme.
 To enable the feature, support in both kernel and adapter firmware is required.

For support in the kernel, make sure the following flags are set as follows.

CONFIG_XFRM_OFFLOAD=y
CONFIG_INET_ESP_OFFLOAD=m
CONFIG_INET6_ESP_OFFLOAD=m

Note: These flags are enabled by default in RedHat 8 and Ubuntu 18.04.

For support in the firmware, make sure the below string is found in the dmesg.

mlx5e: IPSec ESP acceleration enabled

Configuring Security Associations for IPsec Offloads
To program the inline offload security associations (SA), add the option "offload dev <netdev interface>
dir out/in" in the "ip xfrm state" command for transmitting and receiving SA.
Transmit inline offload SA xfrm command example:

sudo ip xfrm state add src 192.168.1.64/24 dst 192.168.1.65/24 proto esp spi
0x46dc6204 reqid 0x46dc6204 mode transport aead 'rfc4106(gcm(aes))'
0x60bd6c3eafba371a46411830fd56c53af93883261ed1fb26767820ff493f43ba35b0dcca 128
 offload dev p4p1 dir out sel src 192.168.1.64 dst 192.168.1.65

 Receive inline offload SA xfrm command example:

sudo ip xfrm state add src 192.168.1.65/24 dst 192.168.1.64/24 proto esp spi
0xaea0846c reqid 0xaea0846c mode transport aead 'rfc4106(gcm(aes))'
0x81d5c3167c912c1dd50dab0cb4b6d815b6ace8844304db362215a258cd19deda8f89deda 128
 offload dev p4p1 dir in sel src 192.168.1.65 dst 192.168.1.64

InfiniBand Network
The chapter contains the following sections:

InfiniBand Interface
OpenSM
QoS - Quality of Service
IP over InfiniBand (IPoIB)

This feature is supported on ConnectX-6 Dx adapter cards (with crypto unit) only.

https://www.kernel.org/doc/html/latest/networking/tls-offload.html
https://www.kernel.org/doc/html/latest/networking/tls.html#kernel-tls

122

•
•
•
•
•
•

•
•
•

Advanced Transport
Optimized Memory Access
Mellanox PeerDirect®
CPU Overhead Distribution
Out-of-Order (OOO) Data Placement
IB Router

InfiniBand Interface

Port Type Management
For information on port type management of ConnectX-4 and above adapter cards, please refer to Port
Type Management/VPI Cards Configuration section.

RDMA Counters
RDMA counters are available only through sysfs located under:

/sys/class/infiniband/<device>/ports/*/counters/
/sys/class/infiniband/<device>/ports/*/hw_counters/

For mlx5 port and RDMA counters, refer to the Understanding mlx5 Linux Counters Community post.

OpenSM
OpenSM is an InfiniBand compliant Subnet Manager (SM). It is provided as a fixed flow executable
called "opensm", accompanied by a testing application called "osmtest". OpenSM implements an
InfiniBand compliant SM according to the InfiniBand Architecture Specification chapters: Management
Model, Subnet Management, and Subnet Administration.

opensm
opensm is an InfiniBand compliant Subnet Manager and Subnet Administrator that runs on top of the
Mellanox OFED stack. opensm performs the InfiniBand specification's required tasks for initializing
InfiniBand hardware. One SM must be running for each InfiniBand subnet.
opensm also provides an experimental version of a performance manager.
opensm defaults were designed to meet the common case usage on clusters with up to a few hundred
nodes. Thus, in this default mode, opensm will scan the IB fabric, initialize it, and sweep occasionally
for changes.
opensm attaches to a specific IB port on the local machine and configures only the fabric connected to
it. (If the local machine has other IB ports, opensm will ignore the fabrics connected to those other
ports). If no port is specified, opensm will select the first "best" available port. opensm can also
present the available ports and prompt for a port number to attach to.
By default, the opensm run is logged to two files: /var/log/messages and /var/log/ opensm.log. The
first file will register only general major events, whereas the second file will include details of reported
errors. All errors reported in this second file should be treated as indicators of IB fabric health issues.
(Note that when a fatal and non-recoverable error occurs, opensm will exit). Both log files should
include the message "SUBNET UP" if opensm was able to set up the subnet correctly.
Syntax

opensm [OPTIONS]

For the complete list of opensm options, please run:

https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters
https://community.mellanox.com/s/article/understanding-mlx5-linux-counters-and-status-parameters

123

•

•

opensm --help / -h / -?

Environment Variables
The following environment variables control opensm behavior:

OSM_TMP_DIR - controls the directory in which the temporary files generated by opensm are
created. These files are: opensm-subnet.lst, opensm.fdbs, and opensm.mcfdbs. By default, this
directory is /var/log.
OSM_CACHE_DIR - opensm stores certain data to the disk such that subsequent runs are
consistent. The default directory used is /var/cache/opensm. The following file is included in it:
guid2lid – stores the LID range assigned to each GUID

Signaling
When OpenSM receives a HUP signal, it starts a new heavy sweep as if a trap has been received or a
topology change has been found.
Also, SIGUSR1 can be used to trigger a reopen of /var/log/opensm.log for logrotate purposes.

Running opensm
The defaults of opensm were designed to meet the common case usage on clusters with up to a few
hundred nodes. Thus, in this default mode, opensm will scan the IB fabric, initialize it, and sweep
occasionally for changes.
To run opensm in the default mode, simply enter:

host1# opensm

Note that opensm needs to be run on at least one machine in an IB subnet.
By default, an opensm run is logged to two files: /var/log/messages and /var/log/ opensm.log. The first
file, message, registers only general major events; the second file, opensm.log, includes details of
reported errors. All errors reported in opensm.log should be treated as indicators of IB fabric health.
Both log files should include the message "SUBNET UP" if opensm was able to set up the subnet
correctly.

Running OpenSM As Daemon
OpenSM can also run as daemon. To run OpenSM in this mode, enter:

host1# /etc/init.d/opensmd start

osmtest
osmtest is a test program for validating the InfiniBand Subnet Manager and Subnet Administrator.
osmtest provides a test suite for opensm. It can create an inventory file of all available nodes, ports,
and PathRecords, including all their fields. It can also verify the existing inventory with all the object
fields and matches it to a pre-saved one.
osmtest has the following test flows:

If a fatal, non-recoverable error occurs, OpenSM will exit.

124

•
•
•
•
•

•

Multicast Compliancy test
Event Forwarding test
Service Record registration test
RMPP stress test
Small SA Queries stress test

For further information, please refer to the tool's man page.

Partitions
OpenSM enables the configuration of partitions (PKeys) in an InfiniBand fabric. By default, OpenSM
searches for the partitions configuration file under the name /etc/opensm/partitions.conf. To change
this filename, you can use opensm with the '--Pconfig' or '-P' flags.
The default partition is created by OpenSM unconditionally, even when a partition configuration file
does not exist or cannot be accessed.
The default partition has a P_Key value of 0x7fff. The port out of which runs OpenSM is assigned full
membership in the default partition. All other end-ports are assigned partial membership.

File Format

General File Format

 <Partition Definition>:\[<newline>\]<Partition Properties>

<Partition Definition>:

[PartitionName\]\[=PKey\]\[,ipoib_bc_flags\]\[,defmember=full|limited\]

where:
PartitionName String, will be used with logging. When omitted empty string will be

used.

PKey P_Key value for this partition. Only low 15 bits will be used.
When omitted will be auto-generated.

ipoib_bc_flags Used to indicate/specify IPoIB capability of this partition.

defmember=full|
limited|both

Specifies default membership for port GUID list. Default is
limited.

ipoib_bc_flags are:
ipoib Indicates that this partition may be used for IPoIB, as a

result the IPoIB broadcast group will be created with the
flags given, if any.

rate=<val> Specifies rate for this IPoIB MC group (default is 3
(10GBps))

mtu=<val> Specifies MTU for this IPoIB MC group (default is 4
(2048))

sl=<val> Specifies SL for this IPoIB MC group (default is 0)

Line content followed after '#' character is comment and ignored by parser.

125

•

•

•

•

scope=<val> Specifies scope for this IPoIB MC group (default is 2
(link local))

<Partition Properties>:

 \[<Port list>|<MCast Group>\]* | <Port list>

<Port List>:

<Port Specifier>[,<Port Specifier>]

<Port Specifier>:

<PortGUID>[=[full|limited|both]]

where
PortGUID GUID of partition member EndPort. Hexadecimal

numbers should start from 0x, decimal numbers
are accepted too.

full, limited Indicates full and/or limited membership for
this both port. When omitted (or unrecognized)
limited membership is assumed. Both indicate
full and limited membership for this port.

<MCast Group>:

mgid=gid[,mgroup_flag]*<newline>

where:
mgid=gi
d

gid specified is verified to be a Multicast address IP groups
are verified to match the rate and mtu of the broadcast group.
The P_Key bits of the mgid for IP groups are verified to either
match the P_Key specified in by "Partition Definition" or if
they are 0x0000 the P_Key will be copied into those bits.

mgroup_
flag

rate=<v
al>

Specifies rate for this MC group (default is 3
(10GBps))

mtu=<va
l>

Specifies MTU for this MC group (default is 4 (2048))

sl=<val
>

Specifies SL for this MC group (default is 0)

scope=<
val>

Specifies scope for this MC group (default is 2 (link
local)). Multiple scope settings are permitted for a
partition.
NOTE: This overwrites the scope nibble of the specified
mgid. Furthermore specifying multiple scope settings
will result in multiple MC groups being created.

qkey=<v
al>

Specifies the Q_Key for this MC group (default: 0x0b1b
for IP groups, 0 for other groups)

tclass=
<val>

Specifies tclass for this MC group (default is 0)

126

•
•
•
•
•

•
•

•

FlowLab
el=<val
>

Specifies FlowLabel for this MC group (default is 0)

Note that values for rate, MTU, and scope should be specified as defined in the IBTA specification (for
example, mtu=4 for 2048). To use 4K MTU, edit that entry to "mtu=5" (5 indicates 4K MTU to that
specific partition).
PortGUIDs list:

PortGUID GUID of partition member EndPort. Hexadecimal numbers should start
from 0x, decimal numbers are accepted too.
full or limited indicates full or limited membership for this port. When omitted
(or unrecognized) limited membership is assumed.

There are some useful keywords for PortGUID definition:
'ALL_CAS' means all Channel Adapter end ports in this subnet
'ALL_VCAS' means all virtual end ports in the subnet
'ALL_SWITCHES' means all Switch end ports in this subnet
'ALL_ROUTERS' means all Router end ports in this subnet
'SELF' means subnet manager's port. An empty list means that there are no ports in this
partition

Notes:
White space is permitted between delimiters ('=', ',',':',';').
PartitionName does not need to be unique, PKey does need to be unique. If PKey is repeated
then those partition configurations will be merged and the first PartitionName will be used (see
the next note).
It is possible to split partition configuration in more than one definition, but then PKey should be
explicitly specified (otherwise different PKey values will be generated for those definitions).

Examples:

Default=0x7fff : ALL, SELF=full ;
Default=0x7fff : ALL, ALL_SWITCHES=full, SELF=full ;

NewPartition , ipoib : 0x123456=full, 0x3456789034=limi, 0x2134af2306 ;

YetAnotherOne = 0x300 : SELF=full ;
YetAnotherOne = 0x300 : ALL=limited ;

ShareIO = 0x80 , defmember=full : 0x123451, 0x123452;
0x123453, 0x123454 will be limited
ShareIO = 0x80 : 0x123453, 0x123454, 0x123455=full;
0x123456, 0x123457 will be limited
ShareIO = 0x80 : defmember=limited : 0x123456, 0x123457, 0x123458=full;
ShareIO = 0x80 , defmember=full : 0x123459, 0x12345a;
ShareIO = 0x80 , defmember=full : 0x12345b, 0x12345c=limited, 0x12345d;

multicast groups added to default
Default=0x7fff,ipoib:
mgid=ff12:401b::0707,sl=1 # random IPv4 group
mgid=ff12:601b::16 # MLDv2-capable routers
mgid=ff12:401b::16 # IGMP
mgid=ff12:601b::2 # All routers
mgid=ff12::1,sl=1,Q_Key=0xDEADBEEF,rate=3,mtu=2 # random group
ALL=full;

The following rule is equivalent to how OpenSM used to run prior to the partition manager:

Default=0x7fff,ipoib:ALL=full;

127

1.

2.

3.

4.

5.

6.

7.

1.

2.

Effect of Topology Changes
If a link is added or removed, OpenSM may not recalculate the routes that do not have to change. A
route has to change if the port is no longer UP or no longer the MinHop. When routing changes are
performed, the same algorithm for balancing the routes is invoked.
In the case of using the file-based routing, any topology changes are currently ignored. The 'file'
routing engine just loads the LFTs from the file specified, with no reaction to real topology. Obviously,
this will not be able to recheck LIDs (by GUID) for disconnected nodes, and LFTs for non-existent
switches will be skipped. Multicast is not affected by 'file' routing engine (this uses min hop tables).

Routing Algorithms
OpenSM offers the following routing engines:

Min Hop Algorithm
Based on the minimum hops to each node where the path length is optimized.
UPDN Algorithm
Based on the minimum hops to each node, but it is constrained to ranking rules. This algorithm
should be chosen if the subnet is not a pure Fat Tree, and a deadlock may occur due to a loop in
the subnet.
Fat-tree Routing Algorithm
This algorithm optimizes routing for a congestion-free "shift" communication pattern. It should
be chosen if a subnet is a symmetrical Fat Tree of various types, not just a K-ary-N-Tree: non-
constant K, not fully staffed, and for any CBB ratio. Similar to UPDN, Fat Tree routing is
constrained to ranking rules.
LASH Routing Algorithm
Uses InfiniBand virtual layers (SL) to provide deadlock-free shortest-path routing while also
distributing the paths between layers. LASH is an alternative deadlock-free, topology-agnostic
routing algorithm to the non-minimal UPDN algorithm. It avoids the use of a potentially
congested root node.
DOR Routing Algorithm
Based on the Min Hop algorithm, but avoids port equalization except for redundant links
between the same two switches. This provides deadlock free routes for hypercubes when the
fabric is cabled as a hypercube and for meshes when cabled as a mesh.
Torus-2QoS Routing Algorithm
Based on the DOR Unicast routing algorithm specialized for 2D/3D torus topologies. Torus-
2QoS provides deadlock-free routing while supporting two quality of service (QoS) levels.
Additionally, it can route around multiple failed fabric links or a single failed fabric switch
without introducing deadlocks, and without changing path SL values granted before the failure.
Routing Chains
Allows routing configuration of different parts of a single InfiniBand subnet by different routing
engines. In the current release, minhop/updn/ftree/dor/torus-2QoS/pqft can be combined.

MINHOP/UPDN/DOR routing algorithms are comprised of two stages:
MinHop matrix calculation. How many hops are required to get from each port to each LID. The
algorithm to fill these tables is different if you run standard (min hop) or Up/Down. For standard
routing, a "relaxation" algorithm is used to propagate min hop from every destination LID
through neighbor switches. For Up/Down routing, a BFS from every target is used. The BFS
tracks link direction (up or down) and avoid steps that will perform up after a down step was
used.
Once MinHop matrices exist, each switch is visited and for each target LID a decision is made as
to what port should be used to get to that LID. This step is common to standard and Up/Down
routing. Each port has a counter counting the number of target LIDs going through it. When
there are multiple alternative ports with same MinHop to a LID, the one with less previously

128

a.
b.

c.
d.

1.

2.

3.

•

assigned ports is selected.
If LMC > 0, more checks are added. Within each group of LIDs assigned to same target port:

Use only ports which have same MinHop
First prefer the ones that go to different systemImageGuid (then the previous LID of the
same LMC group)
If none, prefer those which go through another NodeGuid
Fall back to the number of paths method (if all go to same node).

Min Hop Algorithm
The Min Hop algorithm is invoked by default if no routing algorithm is specified. It can also be invoked
by specifying '-R minhop'.
The Min Hop algorithm is divided into two stages: computation of min-hop tables on every switch and
LFT output port assignment. Link subscription is also equalized with the ability to override based on
port GUID. The latter is supplied by:

-i <equalize-ignore-guids-file>
-ignore-guids <equalize-ignore-guids-file>

This option provides the means to define a set of ports (by GUIDs) that will be ignored by the link load
equalization algorithm.
LMC awareness routes based on a (remote) system or on a switch basis.

UPDN Algorithm
The UPDN algorithm is designed to prevent deadlocks from occurring in loops of the subnet. A loop-
deadlock is a situation in which it is no longer possible to send data between any two hosts connected
through the loop. As such, the UPDN routing algorithm should be sent if the subnet is not a pure Fat
Tree, and one of its loops may experience a deadlock (due, for example, to high pressure).
The UPDN algorithm is based on the following main stages:

Auto-detect root nodes - based on the CA hop length from any switch in the subnet, a statistical
histogram is built for each switch (hop num vs the number of occurrences). If the histogram
reflects a specific column (higher than others) for a certain node, then it is marked as a root
node. Since the algorithm is statistical, it may not find any root nodes. The list of the root nodes
found by this auto-detect stage is used by the ranking process stage.

Ranking process - All root switch nodes (found in stage 1) are assigned a rank of 0. Using the
BFS algorithm, the rest of the switch nodes in the subnet are ranked incrementally. This ranking
aids in the process of enforcing rules that ensure loop-free paths.
Min Hop Table setting - after ranking is done, a BFS algorithm is run from each (CA or switch)
node in the subnet. During the BFS process, the FDB table of each switch node traversed by BFS
is updated, in reference to the starting node, based on the ranking rules and GUID values.

At the end of the process, the updated FDB tables ensure loop-free paths through the subnet.

UPDN Algorithm Usage

Activation through OpenSM:
Use '-R updn' option (instead of old '-u') to activate the UPDN algorithm.

The user can override the node list manually.

If this stage cannot find any root nodes, and the user did not specify a GUID list file,
OpenSM defaults back to the Min Hop routing algorithm.

129

•

•
•

•
•

•

•
•

•

•
•

Use '-a <root_guid_file>' for adding an UPDN GUID file that contains the root nodes for ranking.
If the `-a' option is not used, OpenSM uses its auto-detect root nodes algorithm.

Notes on the GUID list file:
A valid GUID file specifies one GUID in each line. Lines with an invalid format will be discarded
The user should specify the root switch GUIDs

Fat-tree Routing Algorithm
The fat-tree algorithm optimizes routing for "shift" communication pattern. It should be chosen if a
subnet is a symmetrical or almost symmetrical fat-tree of various types. It supports not just K- ary-N-
Trees, by handling for non-constant K, cases where not all leafs (CAs) are present, any Constant
Bisectional Ratio (CBB)ratio. As in UPDN, fat-tree also prevents credit-loop-dead- locks.
If the root GUID file is not provided ('a' or '-root_guid_file' options), the topology has to be pure fat-tree
that complies with the following rules:

Tree rank should be between two and eight (inclusively)
Switches of the same rank should have the same number of UP-going port groups, unless they
are root switches, in which case the shouldn't have UP-going ports at all.
Note: Ports that are connected to the same remote switch are referenced as ‘port group’.
Switches of the same rank should have the same number of DOWN-going port groups, unless
they are leaf switches.
Switches of the same rank should have the same number of ports in each UP-going port group.
Switches of the same rank should have the same number of ports in each DOWN-going port
group.
All the CAs have to be at the same tree level (rank).

If the root GUID file is provided, the topology does not have to be pure fat-tree, and it should only
comply with the following rules:

Tree rank should be between two and eight (inclusively)
All the Compute Nodes have to be at the same tree level (rank). Note that non-compute node
CAs are allowed here to be at different tree ranks.
Note: List of compute nodes (CNs) can be specified using ‘-u’ or ‘--cn_guid_file’ OpenSM
options.

Topologies that do not comply cause a fallback to min-hop routing. Note that this can also occur on
link failures which cause the topology to no longer be a "pure" fat-tree.
Note that although fat-tree algorithm supports trees with non-integer CBB ratio, the routing will not be
as balanced as in case of integer CBB ratio. In addition to this, although the algorithm allows leaf
switches to have any number of CAs, the closer the tree is to be fully populated, the more effective the
"shift" communication pattern will be. In general, even if the root list is provided, the closer the
topology to a pure and symmetrical fat-tree, the more optimal the routing will be.
The algorithm also dumps the compute node ordering file (opensm-ftree-ca-order.dump) in the same
directory where the OpenSM log resides. This ordering file provides the CN order that may be used to
create efficient communication pattern, that will match the routing tables.
Routing between non-CN Nodes
The use of the io_guid_file option allows non-CN nodes to be located on different levels in the fat tree.
In such case, it is not guaranteed that the Fat Tree algorithm will route between two non-CN nodes. In
the scheme below, N1, N2 , and N3 are non-CN nodes. Although all the CN have routes to and from
them, there will not necessarily be a route between N1,N2 and N3. Such routes would require to use at

130

1.

2.

3.

least one of the switches the wrong way around.

To solve this problem, a list of non-CN nodes can be specified by \'-G\' or \'--io_guid_file\' option.
These nodes will be allowed to use switches the wrong way around a specific number of times
(specified by \'-H\' or \'--max_reverse_hops\'. With the proper max_reverse_hops and io_guid_file
values, you can ensure full connectivity in the Fat Tree. In the scheme above, with a max_reverse_hop
of 1, routes will be instantiated between N1<->N2 and N2<->N3. With a max_reverse_hops value of 2,
N1,N2 and N3 will all have routes between them.

Activation through OpenSM
Use '-R ftree' option to activate the fat-tree algorithm.

LASH Routing Algorithm
LASH is an acronym for LAyered SHortest Path Routing. It is a deterministic shortest path routing
algorithm that enables topology agnostic deadlock-free routing within communication networks.
When computing the routing function, LASH analyzes the network topology for the shortest-path routes
between all pairs of sources/destinations and groups these paths into virtual layers in such a way as to
avoid deadlock.

Here is a detailed explanation of how this algorithm works:
LASH determines the shortest-path between all pairs of source/destination switches. Note,
LASH ensures the same SL is used for all SRC/DST - DST/SRC pairs and there is no guarantee
that the return path for a given DST/SRC will be the reverse of the route SRC/DST.
LASH then begins an SL assignment process where a route is assigned to a layer (SL) if the
addition of that route does not cause deadlock within that layer. This is achieved by maintaining
and analyzing a channel dependency graph for each layer. Once the potential addition of a path
could lead to deadlock, LASH opens a new layer and continues the process.
Once this stage has been completed, it is highly likely that the first layers processed will contain
more paths than the latter ones. To better balance the use of layers, LASH moves paths from
one layer to another so that the number of paths in each layer averages out.

Note that the implementation of LASH in opensm attempts to use as few layers as possible. This
number can be less than the number of actual layers available.

Using max_reverse_hops creates routes that use the switch in a counter-stream way. This
option should never be used to connect nodes with high bandwidth traffic between them! It
should only be used to allow connectivity for HA purposes or similar. Also having routes the
other way around can cause credit loops.

LMC > 0 is not supported by fat-tree routing. If this is specified, the default routing algorithm is
invoked instead.

LASH analyzes routes and ensures deadlock freedom between switch pairs. The link from
HCA between and switch does not need virtual layers as deadlock will not arise between
switch and HCA.

131

•
•
•

•
•

•

In general, LASH is a very flexible algorithm. It can, for example, reduce to Dimension Order Routing in
certain topologies, it is topology agnostic and fares well in the face of faults.
It has been shown that for both regular and irregular topologies, LASH outperforms Up/Down. The
reason for this is that LASH distributes the traffic more evenly through a network, avoiding the
bottleneck issues related to a root node and always routes shortest-path.
The algorithm was developed by Simula Research Laboratory. Use '-R lash -Q' option to activate the
LASH algorithm

For open regular cartesian meshes, the DOR algorithm is the ideal routing algorithm. For toroidal
meshes, on the other hand, there are routing loops that can cause deadlocks. LASH can be used to
route these cases. The performance of LASH can be improved by preconditioning the mesh in cases
where there are multiple links connecting switches and also in cases where the switches are not
cabled consistently. To invoke this, use '-R lash -Q --do_mesh_analysis'. This will add an additional
phase that analyses the mesh to try to determine the dimension and size of a mesh. If it determines
that the mesh looks like an open or closed cartesian mesh it reorders the ports in dimension order
before the rest of the LASH algorithm runs.

DOR Routing Algorithm
The Dimension Order Routing algorithm is based on the Min Hop algorithm and so uses shortest paths.
Instead of spreading traffic out across different paths with the same shortest distance, it chooses
among the available shortest paths based on an ordering of dimensions. Each port must be
consistently cabled to represent a hypercube dimension or a mesh dimension. Paths are grown from a
destination back to a source using the lowest dimension (port) of available paths at each step. This
provides the ordering necessary to avoid deadlock. When there are multiple links between any two
switches, they still represent only one dimension and traffic is balanced across them unless port
equalization is turned off. In the case of hypercubes, the same port must be used throughout the fabric
to represent the hypercube dimension and match on both ends of the cable. In the case of meshes, the
dimension should consistently use the same pair of ports, one port on one end of the cable, and the
other port on the other end, continuing along the mesh dimension.
Use '-R dor' option to activate the DOR algorithm.

Torus-2QoS Routing Algorithm
Torus-2QoS is a routing algorithm designed for large-scale 2D/3D torus fabrics. The torus-2QoS
routing engine can provide the following functionality on a 2D/3D torus:

Free of credit loops routing
Two levels of QoS, assuming switches support 8 data VLs
Ability to route around a single failed switch, and/or multiple failed links, without:

introducing credit loops
changing path SL values

Very short run times, with good scaling properties as fabric size increases

Unicast Routing

Torus-2 QoS is a DOR-based algorithm that avoids deadlocks that would otherwise occur in a torus
using the concept of a dateline for each torus dimension. It encodes into a path SL which datelines the
path crosses as follows:

QoS support has to be turned on in order that SL/VL mappings are used.

LMC > 0 is not supported by the LASH routing. If this is specified, the default routing algorithm
is invoked instead.

132

sl = 0;
for (d = 0; d < torus_dimensions; d++)
/* path_crosses_dateline(d) returns 0 or 1 */
sl |= path_crosses_dateline(d) << d;

For a 3D torus, that leaves one SL bit free, which torus-2 QoS uses to implement two QoS levels.
Torus-2 QoS also makes use of the output port dependence of switch SL2VL maps to encode into one
VL bit the information encoded in three SL bits. It computes in which torus coordinate direc- tion each
inter-switch link "points", and writes SL2VL maps for such ports as follows:

for (sl = 0; sl < 16; sl ++)
/* cdir(port) reports which torus coordinate direction a switch port
* "points" in, and returns 0, 1, or 2 */
sl2vl(iport,oport,sl) = 0x1 & (sl >> cdir(oport));

Thus, on a pristine 3D torus, i.e., in the absence of failed fabric switches, torus-2 QoS consumes 8 SL
values (SL bits 0-2) and 2 VL values (VL bit 0) per QoS level to provide deadlock-free routing on a 3D
torus. Torus-2 QoS routes around link failure by "taking the long way around" any 1D ring interrupted
by a link failure. For example, consider the 2D 6x5 torus below, where switches are denoted by [+a-zA-
Z]:

For a pristine fabric the path from S to D would be S-n-T-r-D. In the event that either link S-n or n-T
has failed, torus-2QoS would use the path S-m-p-o-T-r-D.
Note that it can do this without changing the path SL value; once the 1D ring m-S-n-T-o-p-m has been
broken by failure, path segments using it cannot contribute to deadlock, and the x-direction dateline
(between, say, x=5 and x=0) can be ignored for path segments on that ring. One result of this is that
torus-2QoS can route around many simultaneous link failures, as long as no 1D ring is broken into
disjoint segments. For example, if links n-T and T-o have both failed, that ring has been broken into two
disjoint segments, T and o-p-m-S-n. Torus-2QoS checks for such issues, reports if they are found, and
refuses to route such fabrics.
Note that in the case where there are multiple parallel links between a pair of switches, torus-2QoS
will allocate routes across such links in a round-robin fashion, based on ports at the path destination
switch that are active and not used for inter-switch links. Should a link that is one of severalsuch
parallel links fail, routes are redistributed across the remaining links. When the last of such a set of
parallel links fails, traffic is rerouted as described above.
Handling a failed switch under DOR requires introducing into a path at least one turn that would be
otherwise "illegal", i.e. not allowed by DOR rules. Torus-2QoS will introduce such a turn as close as
possible to the failed switch in order to route around it. n the above example, suppose switch T has
failed, and consider the path from S to D. Torus-2QoS will produce the path S-n-I-r-D, rather than the
S-n-T-r-D path for a pristine torus, by introducing an early turn at n. Normal DOR rules will cause

133

traffic arriving at switch I to be forwarded to switch r; for traffic arriving from I due to the "early" turn at
n, this will generate an "illegal" turn at I.
Torus-2QoS will also use the input port dependence of SL2VL maps to set VL bit 1 (which would be
otherwise unused) for y-x, z-x, and z-y turns, i.e., those turns that are illegal under DOR. This causes
the first hop after any such turn to use a separate set of VL values, and prevents deadlock in the
presence of a single failed switch. For any given path, only the hops after a turn that is illegal under
DOR can contribute to a credit loop that leads to deadlock. So in the example above with failed switch
T, the location of the illegal turn at I in the path from S to D requires that any credit loop caused by that
turn must encircle the failed switch at T. Thus the second and later hops after the illegal turn at I (i.e.,
hop r-D) cannot contribute to a credit loop because they cannot be used to construct a loop encircling
T. The hop I-r uses a separate VL, so it cannot contribute to a credit loop encircling T. Extending this
argument shows that in addition to being capable of routing around a single switch failure without
introducing deadlock, torus-2QoS can also route around multiple failed switches on the condition they
are adjacent in the last dimension routed by DOR. For example, consider the following case on a 6x6 2D
torus:

Suppose switches T and R have failed, and consider the path from S to D. Torus-2QoS will generate the
path S-n-q-I-u-D, with an illegal turn at switch I, and with hop I-u using a VL with bit 1 set. As a further
example, consider a case that torus-2QoS cannot route without deadlock: two failed switches adjacent
in a dimension that is not the last dimension routed by DOR; here the failed switches are O and T:

In a pristine fabric, torus-2QoS would generate the path from S to D as S-n-O-T-r-D. With failed
switches O and T, torus-2QoS will generate the path S-n-I-q-r-D, with an illegal turn at switch I, and
with hop I-q using a VL with bit 1 set. In contrast to the earlier examples, the second hop after the
illegal turn, q-r, can be used to construct a credit loop encircling the failed switches.

134

Multicast Routing

Since torus-2QoS uses all four available SL bits, and the three data VL bits that are typically available in
current switches, there is no way to use SL/VL values to separate multicast traffic from unicast traffic.
Thus, torus-2QoS must generate multicast routing such that credit loops cannot arise from a
combination of multicast and unicast path segments. It turns out that it is possible to construct
spanning trees for multicast routing that have that property. For the 2D 6x5 torus
example above, here is the full-fabric spanning tree that torus-2QoS will construct, where "x" is the
root switch and each "+" is a non-root switch:

For multicast traffic routed from root to tip, every turn in the above spanning tree is a legal DOR turn.
For traffic routed from tip to root, and some traffic routed through the root, turns are not legal DOR
turns. However, to construct a credit loop, the union of multicast routing on this spanning tree with
DOR unicast routing can only provide 3 of the 4 turns needed for the loop. In addition, if none of the
above spanning tree branches crosses a dateline used for unicast credit loop avoidance on a torus, and
if multicast traffic is confined to SL 0 or SL 8 (recall that torus-2QoS uses SL bit 3 to differentiate QoS
level), then multicast traffic also cannot contribute to the "ring" credit loops that are otherwise possible
in a torus. Torus-2QoS uses these ideas to create a master spanning tree. Every multicast group
spanning tree will be constructed as a subset of the master tree, with the same root as the master
tree. Such multicast group spanning trees will in general not be optimal for groups which are a subset
of the full fabric. However, this compromise must be made to enable support for two QoS levels on a
torus while preventing credit loops. In the presence of link or switch failures that result in a fabric for
which torus-2QoS can generate credit-loop-free unicast routes, it is also possible to generate a master
spanning tree for multicast that retains the required properties. For example, consider that same 2D
6x5 torus, with the link from (2,2) to (3,2) failed. Torus-2QoS will generate the following master
spanning tree:

135

Two things are notable about this master spanning tree. First, assuming the x dateline was between
x=5 and x=0, this spanning tree has a branch that crosses the dateline. However, just as for unicast,
crossing a dateline on a 1D ring (here, the ring for y=2) that is broken by a failure cannot contribute to a
torus credit loop. Second, this spanning tree is no longer optimal even for multicast groups that
encompass the entire fabric. That, unfortunately, is a compromise that must be made to retain the
other desirable properties of torus-2QoS routing. In the event that a single switch fails, torus-2QoS will
generate a master spanning tree that has no "extra" turns by appropriately selecting a root switch. In
the 2D 6x5 torus example, assume now that the switch at (3,2),
i.e. the root for a pristine fabric, fails. Torus-2QoS will generate the following master spanning tree for
that case:

Assuming the dateline was between y=4 and y=0, this spanning tree has a branch that crosses a
dateline. However, this cannot contribute to credit loops as it occurs on a 1D ring (the ring for x=3) that
is broken by failure, as in the above example.

Torus Topology Discovery

The algorithm used by torus-2QoS to construct the torus topology from the undirected graph
representing the fabric requires that the radix of each dimension be configured via torus-2QoS.conf. It
also requires that the torus topology be "seeded"; for a 3D torus this requires configuring four switches
that define the three coordinate directions of the torus. Given this starting information, the algorithm is
to examine the cube formed by the eight switch locations bounded by the corners (x,y,z) and
(x+1,y+1,z+1). Based on switches already placed into the torus topology at some of these locations, the
algorithm examines 4-loops of inter-switch links to find the one that is consistent with a face of the
cube of switch locations and adds its switches to the discovered topology in the correct locations.
Because the algorithm is based on examining the topology of 4-loops of links, a torus with one or more
radix-4 dimensions requires extra initial seed configuration. See torus-2QoS.conf(5) for details.
Torus-2QoS will detect and report when it has an insufficient configuration for a torus with radix-4
dimensions.
In the event the torus is significantly degraded, i.e., there are many missing switches or links, it may
happen that torus-2QoS is unable to place into the torus some switches and/or links that were
discovered in the fabric, and will generate a warning in that case. A similar condition occurs if
torus-2QoS is misconfigured, i.e., the radix of a torus dimension as configured does not match the
radix of that torus dimension as wired, and many switches/links in the fabric will not be placed into the
torus.

Quality Of Service Configuration

OpenSM will not program switches and channel adapters with SL2VL maps or VL arbitration
configuration unless it is invoked with -Q. Since torus-2QoS depends on such functionality for correct
operation, always invoke OpenSM with -Q when torus-2QoS is in the list of routing engines. Any quality

136

of service configuration method supported by OpenSM will work with torus-2QoS, subject to the
following limitations and considerations. For all routing engines supported by OpenSM except
torus-2QoS, there is a one-to-one correspondence between QoS level and SL. Torus-2QoS can only
support two quality of service levels, so only the high-order bit of any SL value used for unicast QoS
configuration will be honored by torus-2QoS. For multicast QoS configuration, only SL values 0 and 8
should be used with torus-2QoS.
Since SL to VL map configuration must be under the complete control of torus-2QoS, any configuration
via qos_sl2vl, qos_swe_sl2vl, etc., must and will be ignored, and a warning will be generated.
Torus-2QoS uses VL values 0-3 to implement one of its supported QoS levels, and VL values 4-7 to
implement the other. Hard-to-diagnose application issues may arise if traffic is not delivered fairly
across each of these two VL ranges. Torus-2QoS will detect and warn if VL arbitration is configured
unfairly across VLs in the range 0-3, and also in the range 4-7. Note that the default OpenSM VL
arbitration configuration does not meet this constraint, so all torus-2QoS users should configure VL
arbitration via qos_vlarb_high, qos_vlarb_low, etc.

Operational Considerations
Any routing algorithm for a torus IB fabric must employ path SL values to avoid credit loops. As a
result, all applications run over such fabrics must perform a path record query to obtain the correct
path SL for connection setup. Applications that use rdma_cm for connection setup will automatically
meet this requirement.
If a change in fabric topology causes changes in path SL values required to route without credit loops,
in general, all applications would need to repath to avoid message deadlock. Since torus- 2QoS has the
ability to reroute after a single switch failure without changing path SL values, repathing by running
applications is not required when the fabric is routed with torus-2QoS.
Torus-2QoS can provide unchanging path SL values in the presence of subnet manager failover
provided that all OpenSM instances have the same idea of dateline location. See torus- 2QoS.conf(5) for
details. Torus-2QoS will detect configurations of failed switches and links that prevent routing that is
free of credit loops and will log warnings and refuse to route. If "no_fall- back" was configured in the
list of OpenSM routing engines, then no other routing engine will attempt to route the fabric. In that
case, all paths that do not transit the failed components will continue to work, and the subset of paths
that are still operational will continue to remain free of credit loops. OpenSM will continue to attempt
to route the fabric after every sweep interval and after any change (such as a link up) in the fabric
topology. When the fabric components are repaired, full functionality will be restored. In the event
OpenSM was configured to allow some other engine to route the fabric if torus-2QoS fails, then credit
loops and message deadlock are likely if torus-2QoS had previously routed the fabric successfully.
Even if the other engine is capable of routing a torus without credit loops, applications that built
connections with path SL values granted under torus-2QoS will likely experience message deadlock
under routing generated by a different engine, unless they repath. To verify that a torus fabric is routed
free of credit loops, use ibdmchk to analyze data collected via ibdiagnet -vlr.

Torus-2QoS Configuration File Syntax

The file torus-2QoS.conf contains configuration information that is specific to the OpenSM routing
engine torus-2QoS. Blank lines and lines where the first non-whitespace character is "#" are ignored.
A token is any contiguous group of non-whitespace characters. Any tokens on a line following the
recognized configuration tokens described below are ignored.

[torus|mesh] x_radix[m|M|t|T] y_radix[m|M|t|T] z_radix[m|M|t|T]

Either torus or mesh must be the first keyword in the configuration and sets the topology that
torus-2QoS will try to construct. A 2D topology can be configured by specifying one of x_radix, y_radix,
or z_radix as 1. An individual dimension can be configured as mesh (open) or torus (looped) by suffixing
its radix specification with one of m, M, t, or T. Thus, "mesh 3T 4 5" and "torus 3 4M 5M" both specify
the same topology.
Note that although torus-2QoS can route mesh fabrics, its ability to route around failed components is

137

severely compromised on such fabrics. A failed fabric components very likely to cause a disjoint ring;
see UNICAST ROUTING in torus-2QoS(8).

xp_link sw0_GUID sw1_GUID
yp_link sw0_GUID sw1_GUID
zp_link sw0_GUID sw1_GUID
xm_link sw0_GUID sw1_GUID
ym_link sw0_GUID sw1_GUID
zm_link sw0_GUID sw1_GUID

These keywords are used to seed the torus/mesh topology. For example, "xp_link 0x2000 0x2001"
specifies that a link from the switch with node GUID 0x2000 to the switch with node GUID 0x2001 would
point in the positive x direction, while "xm_link 0x2000 0x2001" specifies that a link from the switch with
node GUID 0x2000 to the switch with node GUID 0x2001 would point in the negative x direction. All the
link keywords for a given seed must specify the same "from" switch.
In general, it is not necessary to configure both the positive and negative directions for a given
coordinate; either is sufficient. However, the algorithm used for topology discovery needs extra
information for torus dimensions of radix four (see TOPOLOGY DISCOVERY in torus-2QoS(8)). For such
cases, both the positive and negative coordinate directions must be specified.
Based on the topology specified via the torus/mesh keyword, torus-2QoS will detect and log when it has
insufficient seed configuration.

GUIDx_dateline position
y_dateline position
z_dateline position

In order for torus-2QoS to provide the guarantee that path SL values do not change under any
conditions for which it can still route the fabric, its idea of dateline position must not change relative to
physical switch locations. The dateline keywords provide the means to configure such behavior.
The dateline for a torus dimension is always between the switch with coordinate 0 and the switch with
coordinate radix-1 for that dimension. By default, the common switch in a torus seed is taken as the
origin of the coordinate system used to describe switch location. The position parameter for a dateline
keyword moves the origin (and hence the dateline) the specified amount relative to the common switch
in a torus seed.

next_seed

If any of the switches used to specify a seed were to fail torus-2QoS would be unable to complete
topology discovery successfully. The next_seed keyword specifies that the following link and dateline
keywords apply to a new seed specification.
For maximum resiliency, no seed specification should share a switch with any other seed specification.
Multiple seed specifications should use dateline configuration to ensure that torus-2QoS can grant
path SL values that are constant, regardless of which seed was used to initiate topology discovery.
portgroup_max_ports max_ports - This keyword specifies the maximum number of parallel inter-
switch links, and also the maximum number of host ports per switch, that torus-2QoS can
accommodate. The default value is 16. Torus-2QoS will log an error message during topology discovery
if this parameter needs to be increased. If this keyword appears multiple times, the last instance
prevails.
port_order p1 p2 p3 ... - This keyword specifies the order in which CA ports on a destination switch are
visited when computing routes. When the fabric contains switches connected with multiple parallel
links, routes are distributed in a round-robin fashion across such links, and so changing the order that
CA ports are visited changes the distribution of routes across such links. This may be advantageous for
some specific traffic patterns.
The default is to visit CA ports in increasing port order on destination switches. Duplicate values in the
list will be ignored.
Example:

138

1.
2.
3.
4.

Look for a 2D (since x radix is one) 4x5 torus.
torus 1 4 5
y is radix-4 torus dimension, need both
ym_link and yp_link configuration.
yp_link 0x200000 0x200005 # sw @ y=0,z=0 -> sw @ y=1,z=0
ym_link 0x200000 0x20000f # sw @ y=0,z=0 -> sw @ y=3,z=0
z is not radix-4 torus dimension, only need one of
zm_link or zp_link configuration.
zp_link 0x200000 0x200001 # sw @ y=0,z=0 -> sw @ y=0,z=1
next_seed
yp_link 0x20000b 0x200010 # sw @ y=2,z=1 -> sw @ y=3,z=1
ym_link 0x20000b 0x200006 # sw @ y=2,z=1 -> sw @ y=1,z=1
zp_link 0x20000b 0x20000c # sw @ y=2,z=1 -> sw @ y=2,z=2
y_dateline -2 # Move the dateline for this seed
z_dateline -1 # back to its original position.
If OpenSM failover is configured, for maximum resiliency
one instance should run on a host attached to a switch
from the first seed, and another instance should run
on a host attached to a switch from the second seed.
Both instances should use this torus-2QoS.conf to ensure
path SL values do not change in the event of SM failover.
port_order defines the order on which the ports would be
chosen for routing.
port_order 7 10 8 11 9 12 25 28 26 29 27 30

Routing Chains
The routing chains feature is offering a solution that enables one to configure different parts of the
fabric and define a different routing engine to route each of them. The routings are done in a sequence
(hence the name "chains") and any node in the fabric that is configured in more than one part is left
with the routing updated by the last routing engine it was a part of.

Configuring Routing Chains

To configure routing chains:
Define the port groups.
Define topologies based on previously defined port groups.
Define configuration files for each routing engine.
Define routing engine chains over previously defined topologies and configuration files.

Defining Port Groups

The basic idea behind the port groups is the ability to divide the fabric into sub-groups and give each
group an identifier that can be used to relate to all nodes in this group. The port groups is a separate
feature from the routing chains but is a mandatory prerequisite for it. In addition, it is used to define the
participants in each of the routing algorithms.

Defining a Port Group Policy File

In order to define a port group policy file, set the parameter 'pgrp_policy_file' in the opensm
configuration file.
pgrp_policy_file /etc/opensm/conf/port_groups_policy_file

Configuring a Port Group Policy

The port groups policy file details the port groups in the fabric. The policy file should be composed of
one or more paragraphs that define a group. Each paragraph should begin with the line 'port-group'
and end with the line 'end-port-group'.
For example:

139

•
•

•

•

•

port-group
…port group qualifiers…
end-port-group

Port Group Qualifiers

Rule Qualifier

Parameter Description Example

name Each group must have a name. Without a name
qualifier, the policy fails.

name: grp1

use 'use' is an optional qualifier that one can define in
order to describe the usage of this port group (if
undefined, an empty string is used as a default).

use: first port group

There are several qualifiers used to describe a rule that determines which ports will be added to the
group. Each port group may include one or more rules out of the rules described in the below table (at
least one rule must be defined for each port group).

Param
eter

Description Example

guid
list

Comma separated list of GUIDs to include in the group.

If no specific physical ports were configured, all physical ports of the guid are
chosen. However, for each guid, one can detail specific physical ports to be
included in the group. This can be done using the following syntax:

Specify a specific port in a guid to be chosen port-guid: 0x283@3
Specify a specific list of ports in a guid to be chosen
port-guid: 0x286@1/5/7
Specify a specific range of ports in a guid to be chosen
port-guid: 0x289@2-5
Specify a list of specific ports and ports ranges in a guid to be chosen
port-guid: 0x289@2-5/7/9-13/18
Complex rule
port-guid: 0x283@5-8/12/14, 0x286, 0x289/6/ 8/12

port-guid:
0x283, 0x286,
0x289

port
guid
range

It is possible to configure a range of guids to be chosen to the group. However,
while using the range qualifier, it is impossible to detail specific physical ports.

Note: A list of ranges cannot be specified. The below example is invalid and will
cause the policy to fail:

port-guid-range: 0x283-0x289, 0x290- 0x295

port-guid-
range:
0x283-0x289

Unlike the port group's beginning and end which do not require a colon, all qualifiers must end
with a colon (':'). Also - a colon is a predefined mark that must not be used inside qualifier
values. The inclusion of a colon in the name or the use of a port group will result in the policy's
failure.

140

•
•
•
•

Param
eter

Description Example

port
name

One can configure a list of hostnames as a rule. Hosts with a node description
that is built out of these hostnames will be chosen. Since the node description
contains the network card index as well, one might also specify a network card
index and a physical port to be chosen. For example, the given configuration will
cause only physical port 2 of a host with the node description ‘kuku HCA-1’ to be
chosen. port and hca_idx parameters are optional. If the port is unspecified, all
physical ports are chosen. If hca_idx is unspecified, all card numbers are
chosen. Specifying a hostname is mandatory.

One can configure a list of hostname/ port/hca_idx sets in the same qualifier as
follows:

port-name: hostname=kuku; port=2; hca_idx=1 , hostname=host1; port=3,
hostname=host2

Note: port-name qualifier is not relevant for switches, but for HCA’s only.

port-name:
host-
name=kuku;
port=2;
hca_idx=1

port
regexp

One can define a regular expression so that only nodes with a matching node
description will be chosen to the group.

Note: This example shows how to choose nodes which their node description
starts with 'SW'.

port-regexp:
SW

It is possible to specify one physical port to be chosen for matching nodes (there
is no option to define a list or a range of ports). The given example will cause
only nodes that match physical port 3 to be added to the group.

port-regexp:
SW:3

union
rule

It is possible to define a rule that unites two different port groups. This means
that all ports from both groups will be included in the united group.

union-rule:
grp1, grp2

subtrac
t rule

One can define a rule that subtracts one port group from another. The given
rule, for example, will cause all the ports which are a part of grp1, but not
included in grp2, to be chosen.
In subtraction (unlike union), the order does matter, since the purpose is to
subtract the second group from the first one.
There is no option to define more than two groups for union/subtraction.
However, one can unite/subtract groups which are a union or a subtraction
themselves, as shown in the port groups policy file example.

subtract-rule:
grp1, grp2

Predefined Port Groups
There are 3 predefined, automatically created port groups that are available for use, yet cannot be
defined in the policy file (if a group in the policy is configured with the name of one of these predefined
groups, the policy fails) -

ALL - a group that includes all nodes in the fabric
ALL_SWITCHES - a group that includes all switches in the fabric
ALL_CAS - a group that includes all HCAs in the fabric
ALL_ROUTERS - a group that includes all routers in the fabric (supported in OpenSM starting
from v4.9.0)

Port Groups Policy Examples

141

port-group
name: grp3
use: Subtract of groups grp1 and grp2
subtract-rule: grp1, grp2
end-port-group

port-group
name: grp1
port-guid: 0x281, 0x282, 0x283
end-port-group

port-group
name: grp2
port-guid-range: 0x282-0x286
port-name: hostname=server1 port=1
end-port-group

port-group
name: grp4
port-name: hostname=kika port=1 hca_idx=1
end-port-group

port-group
name: grp3
union-rule: grp3, grp4
end-port-group

Defining a Topologies Policy File

In order to define a topology policy file, set the parameter 'topo_policy_file' in the opensm configuration
file.

topo_policy_file /etc/opensm/conf/topo_policy_file.cfg

Configuring a Topology Policy

The topologies policy file details a list of topologies. The policy file should be composed of one or more
paragraphs which define a topology. Each paragraph should begin with the line 'topol- ogy' and end
with the line 'end-topology'.
For example:

topology
…topology qualifiers…
end-topology

Topology Qualifiers

All topology qualifiers are mandatory. Absence of any of the below qualifiers will cause the policy
parsing to fail.
Topology Qualifiers

Unlike topology and end-topology which do not require a colon, all qualifiers must end with a
colon (':'). Also - a colon is a predefined mark that must not be used inside qualifier values. An
inclusion of a column in the qualifier values will result in the policy's failure.

142

•

•

•
•
•

Parameter Description Example

id Topology ID.
Legal Values – any positive value. Must be unique.

id: 1

sw-grp Name of the port group that includes all switches
and switch ports to be used in this topology.

sw-grp: ys_switches

hca-grp Name of the port group that includes all HCA's to
be used in this topology.

hca-grp: ys_hosts

Configuration File per Routing Engine

Each engine in the routing chain can be provided by its own configuration file. Routing engine
configuration file is the fraction of parameters defined in the main opensm configuration file.
Some rules should be applied when defining a particular configuration file for a routing engine:

Parameters that are not specified in specific routing engine configuration file are inherited from
the main opensm configuration file.
The following configuration parameters are taking effect only in the main opensm configuration
file:

qos and qos_* settings like (vl_arb, sl2vl, etc.)
lmc
routing_engine

Defining a Routing Chain Policy File

In order to define a port group policy file, set the parameter 'rch_policy_file' in the opensm
configuration file.

rch_policy_file /etc/opensm/conf/chains_policy_file

First Routing Engine in the Chain
The first unicast engine in a routing chain must include all switches and HCAs in the fabric (topology id
must be 0). The path-bit parameter value is path-bit 0 and it cannot be changed.

Configuring a Routing Chains Policy

The routing chains policy file details the routing engines (and their fallback engines) used for the
fabric's routing. The policy file should be composed of one or more paragraphs which defines an
engine (or a fallback engine). Each paragraph should begin with the line 'unicast-step' and end with the
line 'end-unicast-step'.
For example:

unicast-step
…routing engine qualifiers…
end-unicast-step

143

•
•

•

•

•

•
•

•
•

Routing Engine Qualifiers

Para
mete

r

Description Example

id 'id' is mandatory. Without an ID qualifier for each engine, the policy fails.

Legal values – size_t value (0 is illegal).
The engines in the policy chain are set according to an ascending id order, so
it is highly crucial to verify that the id that is given to the engines match the
order in which you would like the engines to be set.

is: 1

engine This is a mandatory qualifier that describes the routing algorithm used within this
unicast step.
Currently, on the first phase of routing chains, legal values are minhop/ftree/updn.

engine:
minhop

use This is an optional qualifier that enables one to describe the usage of this unicast
step. If undefined, an empty string is used as a default.

use: ftree
routing for
for yellow
stone nodes

config This is an optional qualifier that enables one to define a separate opensm config file
for a specific unicast step. If undefined, all parameters are taken from main opensm
configuration file.

config: /
etc/config/
opensm2.cfg

topolo
gy

Define the topology that this engine uses.

Legal value – id of an existing topology that is defined in topologies policy (or
zero that represents the entire fabric and not a specific topology).
Default value – If unspecified, a routing engine will relate to the entire fabric
(as if topology zero was defined).
Notice: The first routing engine (the engine with the lowest id) MUST be
configured with topology: 0 (entire fabric) or else, the routing chain parser
will fail.

topology: 1

fallba
ck-to

This is an optional qualifier that enables one to define the current unicast step as a
fallback to another unicast step. This can be done by defining the id of the unicast
step that this step is a fallback to.

If undefined, the current unicast step is not a fallback.
If the value of this qualifier is a non-existent engine id, this step will be
ignored.
A fallback step is meaningless if the step it is a fallback to did not fail.
It is impossible to define a fallback to a fall- back step (such definition will be
ignored)

-

path-
bit

This is an optional qualifier that enables one to define a specific lid offset to be used
by the current unicast step. Setting lmc > 0 in main opensm configuration file is a
prerequisite for assigning specific path-bit for the routing engine.
Default value is 0 (if path-bit is not specified)

Path-bit: 1

 Unlike unicast-step and end-unicast-step which do not require a colon, all qualifiers must
end with a colon (':'). Also - a colon is a predefined mark that must not be used inside qualifier
values. An inclusion of a colon in the qualifier values will result in the policy's failure.

144

•
•
•
•

•
•
•
•

•

•
•
•
•

•

•

Dump Files per Routing Engine

Each routing engine on the chain will dump its own data files if the appropriate log_flags is set (for
instance 0x43).
The files that are dumped by each engine are:

opensm-lid-matrix.dump
opensm-lfts.dump
opensm.fdbs
opensm-subnet.lst

These files should contain the relevant data for each engine topology.

Each engine concatenates its ID and routing algorithm name in its dump files names, as follows:
opensm-lid-matrix.2.minhop.dump
opensm.fdbs.3.ftree
opensm-subnet.4.updn.lst

In case that a fallback routing engine is used, both the routing engine that failed and the fallback
engine that replaces it, dump their data.
If, for example, engine 2 runs ftree and it has a fallback engine with 3 as its id that runs minhop,
one should expect to find 2 sets of dump files, one for each engine:

opensm-lid-matrix.2.ftree.dump
opensm-lid-matrix.3.minhop.dump
opensm.fdbs.2.ftree
opensm.fdbs.3.munhop

Unicast Routing Cache
Unicast routing cache prevents routing recalculation (which is a heavy task in a large cluster) when no
topology change was detected during the heavy sweep, or when the topology change does not require
new routing calculation (for example, when one or more CAs/RTRs/leaf switches going down, or one or
more of these nodes coming back after being down).

Quality of Service Management in OpenSM
When Quality of Service (QoS) in OpenSM is enabled (using the ‘-Q’ or ‘--qos’ flags), OpenSM looks for a
QoS Policy file. During fabric initialization and at every heavy sweep, OpenSM parses the QoS policy file,
applies its settings to the discovered fabric elements, and enforces the provided policy on client
requests. The overall flow for such requests is as follows:

The request is matched against the defined matching rules such that the QoS Level definition is
found
Given the QoS Level, a path(s) search is performed with the given restrictions imposed by that
level

sl2vl and mcfdbs files are dumped only once for the entire fabric and NOT by every routing
engine.

145

•

•

1.

2.

3.

There are two ways to define QoS policy:
Advanced – the advanced policy file syntax provides the administrator various ways to match a
PathRecord/MultiPathRecord (PR/MPR) request, and to enforce various QoS constraints on the
requested PR/MPR
Simple – the simple policy file syntax enables the administrator to match PR/MPR requests by
various ULPs and applications running on top of these ULPs

Advanced QoS Policy File
The QoS policy file has the following sections:

Port Groups (denoted by port-groups) - this section defines zero or more port groups that can
be referred later by matching rules (see below). Port group lists ports by:
- Port GUID
- Port name, which is a combination of NodeDescription and IB port number
- PKey, which means that all the ports in the subnet that belong to partition with a given PKey
belong to this port group
- Partition name, which means that all the ports in the subnet that belong to partition with a
given name belong to this port group
- Node type, where possible node types are: CA, SWITCH, ROUTER, ALL, and SELF (SM's port).

QoS Setup (denoted by qos-setup) - this section describes how to set up SL2VL and VL
Arbitration tables on various nodes in the fabric. However, this is not supported in OFED. SL2VL
and VLArb tables should be configured in the OpenSM options file (default location - /var/cache/
opensm/opensm.opts).

QoS Levels (denoted by qos-levels) - each QoS Level defines Service Level (SL) and a few
optional fields:
- MTU limit
- Rate limit
- PKey
- Packet lifetime

When path(s) search is performed, it is done with regards to restriction that these QoS Level
parameters impose. One QoS level that is mandatory to define is a DEFAULT QoS level. It is
applied to a PR/MPR query that does not match any existing match rule. Similar to any other
QoS Level, it can also be explicitly referred by any match rule.

146

•

•
•
•
•

•

QoS Matching Rules (denoted by qos-match-rules) - each PathRecord/MultiPathRecord query
that OpenSM receives is matched against the set of matching rules. Rules are scanned in order
of appearance in the QoS policy file such as the first match takes precedence.
Each rule has a name of QoS level that will be applied to the matching query. A default QoS level
is applied to a query that did not match any rule.
Queries can be matched by:
- Source port group (whether a source port is a member of a specified group)
- Destination port group (same as above, only for destination port)
- PKey
- QoS class
- Service ID
To match a certain matching rule, PR/MPR query has to match ALL the rule's criteria. However,
not all the fields of the PR/MPR query have to appear in the matching rule.
For instance, if the rule has a single criterion - Service ID, it will match any query that has this
Service ID, disregarding rest of the query fields. However, if a certain query has only Service ID
(which means that this is the only bit in the PR/MPR component mask that is on), it will not
match any rule that has other matching criteria besides Service ID.

Simple QoS Policy Definition
Simple QoS policy definition comprises of a single section denoted by qos-ulps. Similar to the advanced
QoS policy, it has a list of match rules and their QoS Level, but in this case a match rule has only one
criterion - its goal is to match a certain ULP (or a certain application on top of this ULP) PR/MPR
request, and QoS Level has only one constraint - Service Level (SL).
The simple policy section may appear in the policy file in combine with the advanced policy, or as a
stand-alone policy definition. See more details and list of match rule criteria below.

Policy File Syntax Guidelines
Leading and trailing blanks, as well as empty lines, are ignored, so the indentation in the
example is just for better readability.
Comments are started with the pound sign (#) and terminated by EOL.
Any keyword should be the first non-blank in the line, unless it's a comment.
Keywords that denote section/subsection start have matching closing keywords.
Having a QoS Level named "DEFAULT" is a must - it is applied to PR/MPR requests that did not
match any of the matching rules.
Any section/subsection of the policy file is optional.

Examples of Advanced Policy Files
As mentioned earlier, any section of the policy file is optional, and the only mandatory part of the policy
file is a default QoS Level.
Here is an example of the shortest policy file:

 qos-levels
 qos-level
 name: DEFAULT
 sl: 0
 end-qos-level
 end-qos-levels

Port groups section is missing because there are no match rules, which means that port groups are
not referred anywhere, and there is no need defining them. And since this policy file doesn't have any
matching rules, PR/MPR query will not match any rule, and OpenSM will enforce default QoS level.
Essentially, the above example is equivalent to not having a QoS policy file at all.
The following example shows all the possible options and keywords in the policy file and their syntax:

147

 #
 # See the comments in the following example.
 # They explain different keywords and their meaning.
 #
 port-groups

 port-group # using port GUIDs
 name: Storage
 # "use" is just a description that is used for logging
 # Other than that, it is just a comment
 use: SRP Targets
 port-guid: 0x10000000000001, 0x10000000000005-0x1000000000FFFA
 port-guid: 0x1000000000FFFF
 end-port-group

 port-group
 name: Virtual Servers
 # The syntax of the port name is as follows:
 # "node_description/Pnum".
 # node_description is compared to the NodeDescription of the node,
 # and "Pnum" is a port number on that node.
 port-name: “vs1 HCA-1/P1, vs2 HCA-1/P1”
 end-port-group

 # using partitions defined in the partition policy
 port-group
 name: Partitions
 partition: Part1
 pkey: 0x1234
 end-port-group

 # using node types: CA, ROUTER, SWITCH, SELF (for node that runs SM)
 # or ALL (for all the nodes in the subnet)
 port-group
 name: CAs and SM
 node-type: CA, SELF
 end-port-group

 end-port-groups

 qos-setup
 # This section of the policy file describes how to set up SL2VL and VL
 # Arbitration tables on various nodes in the fabric.
 # However, this is not supported in OFED - the section is parsed
 # and ignored. SL2VL and VLArb tables should be configured in the
 # OpenSM options file (by default - /var/cache/opensm/opensm.opts).
 end-qos-setup

 qos-levels

 # Having a QoS Level named "DEFAULT" is a must - it is applied to
 # PR/MPR requests that didn't match any of the matching rules.
 qos-level
 name: DEFAULT
 use: default QoS Level
 sl: 0
 end-qos-level

 # the whole set: SL, MTU-Limit, Rate-Limit, PKey, Packet Lifetime
 qos-level
 name: WholeSet
 sl: 1
 mtu-limit: 4
 rate-limit: 5
 pkey: 0x1234
 packet-life: 8
 end-qos-level

 end-qos-levels

 # Match rules are scanned in order of their apperance in the policy file.
 # First matched rule takes precedence.

148

•

•
•
•
•
•

 qos-match-rules

 # matching by single criteria: QoS class
 qos-match-rule
 use: by QoS class
 qos-class: 7-9,11
 # Name of qos-level to apply to the matching PR/MPR
 qos-level-name: WholeSet
 end-qos-match-rule

 # show matching by destination group and service id
 qos-match-rule
 use: Storage targets
 destination: Storage
 service-id: 0x10000000000001, 0x10000000000008-0x10000000000FFF
 qos-level-name: WholeSet
 end-qos-match-rule

 qos-match-rule
 source: Storage
 use: match by source group only
 qos-level-name: DEFAULT
 end-qos-match-rule
 qos-match-rule
 use: match by all parameters
 qos-class: 7-9,11
 source: Virtual Servers
 destination: Storage
 service-id: 0x0000000000010000-0x000000000001FFFF
 pkey: 0x0F00-0x0FFF
 qos-level-name: WholeSet
 end-qos-match-rule
 end-qos-match-rules

Simple QoS Policy - Details and Examples
Simple QoS policy match rules are tailored for matching ULPs (or some application on top of a ULP)
PR/MPR requests. This section has a list of per-ULP (or per-application) match rules and the SL that
should be enforced on the matched PR/MPR query.
Match rules include:

Default match rule that is applied to PR/MPR query that didn't match any of the other match
rules
IPoIB with a default PKey
IPoIB with a specific PKey
Any ULP/application with a specific Service ID in the PR/MPR query
Any ULP/application with a specific PKey in the PR/MPR query
Any ULP/application with a specific target IB port GUID in the PR/MPR query

Since any section of the policy file is optional, as long as basic rules of the file are kept (such as no
referring to nonexistent port group, having default QoS Level, etc), the simple policy section (qos-ulps)
can serve as a complete QoS policy file.
The shortest policy file in this case would be as follows:

qos-ulps
 default : 0 #default SL
end-qos-ulps

It is equivalent to the previous example of the shortest policy file, and it is also equivalent to not having
policy file at all. Below is an example of simple QoS policy with all the possible keywords:

149

qos-ulps
default :0 # default SL
sdp, port-num 30000 :0 # SL for application running on
 # top of SDP when a destination
 # TCP/IPport is 30000
sdp, port-num 10000-20000 : 0
sdp :1 # default SL for any other
 # application running on top of SDP
rds :2 # SL for RDS traffic
ipoib, pkey 0x0001 :0 # SL for IPoIB on partition with
 # pkey 0x0001
ipoib :4 # default IPoIB partition,
 # pkey=0x7FFF
any, service-id 0x6234:6 # match any PR/MPR query with a
 # specific Service ID
any, pkey 0x0ABC :6 # match any PR/MPR query with a
 # specific PKey
srp, target-port-guid 0x1234 : 5 # SRP when SRP Target is located
 # on a specified IB port GUID
any, target-port-guid 0x0ABC-0xFFFFF : 6 # match any PR/MPR query
 # with a specific target port GUID
end-qos-ulps

Similar to the advanced policy definition, matching of PR/MPR queries is done in order of appearance
in the QoS policy file such as the first match takes precedence, except for the "default" rule, which is
applied only if the query didn't match any other rule. All other sections of the QoS policy file take
precedence over the qos-ulps section. That is, if a policy file has both qos-match-rules and qos-ulps
sections, then any query is matched first against the rules in the qos-match-rules section, and only if
there was no match, the query is matched against the rules in qos-ulps section.
Note that some of these match rules may overlap, so in order to use the simple QoS definition
effectively, it is important to understand how each of the ULPs is matched.

IPoIB
IPoIB query is matched by PKey or by destination GID, in which case this is the GID of the multicast
group that OpenSM creates for each IPoIB partition.
Default PKey for IPoIB partition is 0x7fff, so the following three match rules are equivalent:

ipoib:<SL>ipoib, pkey 0x7fff : <SL>
any, pkey 0x7fff : <SL>

SRP
Service ID for SRP varies from storage vendor to vendor, thus SRP query is matched by the target IB
port GUID. The following two match rules are equivalent:

srp, target-port-guid 0x1234 : <SL>
any, target-port-guid 0x1234 : <SL>

Note that any of the above ULPs might contain target port GUID in the PR query, so in order for these
queries not to be recognized by the QoS manager as SRP, the SRP match rule (or any match rule that
refers to the target port GUID only) should be placed at the end of the qos-ulps match rules.

MPI
SL for MPI is manually configured by an MPI admin. OpenSM is not forcing any SL on the MPI traffic,
which explains why it is the only ULP that did not appear in the qos-ulps section.

150

•
•
•
•
•

•
•
•
•

SL2VL Mapping and VL Arbitration
OpenSM cached options file has a set of QoS related configuration parameters, that are used to
configure SL2VL mapping and VL arbitration on IB ports. These parameters are:

Max VLs: the maximum number of VLs that will be on the subnet
High limit: the limit of High Priority component of VL Arbitration table (IBA 7.6.9)
VLArb low table: Low priority VL Arbitration table (IBA 7.6.9) template
VLArb high table: High priority VL Arbitration table (IBA 7.6.9) template
SL2VL: SL2VL Mapping table (IBA 7.6.6) template. It is a list of VLs corresponding to SLs 0-15
(Note that VL15 used here means drop this SL).

There are separate QoS configuration parameters sets for various target types: CAs, routers, switch
external ports, and switch's enhanced port 0. The names of such parameters are prefixed by
"qos_<type>_" string. Here is a full list of the currently supported sets:

qos_ca_ - QoS configuration parameters set for CAs.
qos_rtr_ - parameters set for routers.
qos_sw0_ - parameters set for switches' port 0.
qos_swe_ - parameters set for switches' external ports.

Here's the example of typical default values for CAs and switches' external ports (hard-coded in
OpenSM initialization):

qos_ca_max_vls 15
qos_ca_high_limit 0
qos_ca_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:
0
qos_ca_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:
4
qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15
qos_swe_high_limit 0
qos_swe_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,
14:0
qos_swe_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:
4
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

VL arbitration tables (both high and low) are lists of VL/Weight pairs. Each list entry contains a VL
number (values from 0-14), and a weighting value (values 0-255), indicating the number of 64 byte units
(credits) which may be transmitted from that VL when its turn in the arbitration occurs. A weight of 0
indicates that this entry should be skipped. If a list entry is programmed for VL15 or for a VL that is not
supported or is not currently configured by the port, the port may either skip that entry or send from
any supported VL for that entry.
Note, that the same VLs may be listed multiple times in the High or Low priority arbitration tables, and,
further, it can be listed in both tables. The limit of high-priority VLArb table (qos_<type>_high_limit)
indicates the number of high-priority packets that can be transmitted without an opportunity to send a
low-priority packet. Specifically, the number of bytes that can be sent is high_limit times 4K bytes.
A high_limit value of 255 indicates that the byte limit is unbounded.

A value of 0 indicates that only a single packet from the high-priority table may be sent before an
opportunity is given to the low-priority table.
Keep in mind that ports usually transmit packets of size equal to MTU. For instance, for 4KB MTU a
single packet will require 64 credits, so in order to achieve effective VL arbitration for packets of 4KB
MTU, the weighting values for each VL should be multiples of 64.
Below is an example of SL2VL and VL Arbitration configuration on subnet:

If the 255 value is used, the low priority VLs may be starved.

151

•
•

•

qos_ca_max_vls 15
qos_ca_high_limit 6
qos_ca_vlarb_high 0:4
qos_ca_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15
qos_swe_high_limit 6
qos_swe_vlarb_high 0:4
qos_swe_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

In this example, there are 8 VLs configured on subnet: VL0 to VL7. VL0 is defined as a high priority VL,
and it is limited to 6 x 4KB = 24KB in a single transmission burst. Such configuration would suilt VL that
needs low latency and uses small MTU when transmitting packets. Rest of VLs are defined as low
priority VLs with different weights, while VL4 is effectively turned off.

Deployment Example
The figure below shows an example of an InfiniBand subnet that has been configured by a QoS
manager to provide different service levels for various ULPs.
QoS Deployment on InfiniBand Subnet Example

Enhanced QoS
Enhanced QoS provides a higher resolution of QoS at the service level (SL). Users can configure rate
limit values per SL for physical ports, virtual ports, and port groups, using enhanced_qos_policy_file
configuration parameter.
Valid values of this parameter:

Full path to the policy file through which Enhanced QoS Manager is configured
"null" - to disable the Enhanced QoS Manager (default value)

Enhanced QoS Policy File

The policy file is comprised of three sections:
BW_NAMES: Used to define bandwidth setting and name (currently, rate limit is the only
setting). Bandwidth names can be used in BW_RULES and VPORT_BW_RULES sections.

To enable Enhanced QoS Manager, QoS must be enabled in OpenSM.

152

•

•

•

•

•

•

•
•

•

•

•

Bandwidth names are defined using the syntax:
<name> = <rate limit in 1Mbps units>
Example: My_bandwidth = 50
BW_RULES: Used to define the rules that map the bandwidth setting to a specific SL of a
specific GUID.
Bandwidth rules are defined using the syntax:
<guid>|<port group name> = <sl id>:<bandwidth name>, <sl id>:<bandwidth name>…
Examples:
0x2c90000000025 = 5:My_bandwidth, 7:My_bandwidth
Port_grp1 = 3:My_bandwidth, 9:My_bandwidth
VPORT_BW_RULES: Used to define the rules that map the bandwidth setting to a specific SL of
a specific virtual port GUID.
Bandwidth rules are defined using the syntax:
<guid>= <sl id>:<bandwidth name>, <sl id>:<bandwidth name>…
Examples:
0x2c90000000026= 5:My_bandwidth, 7:My_bandwidth

Special Keywords

Keyword “all” allows setting a rate limit of all SLs to some BW for a specific physical or virtual
port. It is possible to combine “all” with specific SL rate limits.
Example:
0x2c90000000025 = all:BW1,SL3:BW2
In this case, SL3 will be assigned BW2 rate limit, while the rest of SLs get BW1 rate limit.
"default" is a well-known name which can be used to define a default rule used for any GUID
with no defined rule.
If no default rule is defined, any GUID without a specific rule will be configured with unlimited
rate limit for all SLs.
Keyword “all” is also applicable to the default rule. Default rule is local to each section.

Special Subnet Manager Configuration Options

New SM configuration option enhanced_qos_vport0_unlimit_default_rl was added to opensm.conf.
The possible values for this configuration option are:

TRUE: For specific virtual port0 GUID, SLs not mentioned in bandwidth rule will be set to
unlimited bandwidth (0) regardless of the default rule of the VPORT_BW_RULES section.
Virtual port0 GUIDs not mentioned in VPORT_BW_SECTION will be set to unlimited BW on all
SLs.

FALSE: The GUID of virtual port0 is treated as any other virtual port in VPORT_BW_SECTION.
SM should be signaled by HUP once the option is changed.

Default: TRUE

Notes

When rate limit is set to 0, it means that the bandwidth is unlimited.
Any unspecified SL in a rule will be set to 0 (unlimited) rate limit automatically if no default rule
is specified.
Failure to complete policy file parsing leads to an undefined behavior. User must confirm no
relevant error messages in SM log in order to ensure Enhanced QoS Manager is configured
properly.
A file with only 'BW_NAMES' and 'BW_RULES' keywords configures the network with an
unlimited rate limit.
HCA physical port GUID can be specified in BW_RULES and VPORT_BW_RULES sections.

153

•

•

•
•
•

•
•

•
•

•

•

In BW_RULES section, the rate limit assigned to a specific SL will limit the total BW that can be
sent through the PF on a given SL.
In VPORT_BW_RULES section, the rate limit assigned to a specific SL will limit only the traffic
sent from the IB interface corresponding to the physical port GUID (virtual port0 IB interface).
The traffic sent from other virtual IB interfaces will not be limited if no specific rules are defined.

Policy File Example

All physical ports in the fabric are with a rate limit of 50Mbps on SL1, except for GUID
0x2c90000000025, which is configured with rate limit of 25Mbps on SL1. In this example, the traffic on
SLs (other than SL1) is unlimited.
All virtual ports in the fabric (except virtual port0 of all physical ports) will be rate-limited to 15Mbps for
all SLs because of the default rule of VPORT_BW_RULES section.
Virtual port GUID 0x2c90000000026 is configured with a rate limit of 10Mbps on SL3. The rest of the SLs
on this virtual port will get a rate limit of 15 Mbps because of the default rule of VPORT_BW_RULES
section.

BW_NAMES
bw1 = 50
bw2 = 25
bw3 = 15
bw4 = 10

BW_RULES
default= 1:bw1
0x2c90000000025= 1:bw2

VPORT_BW_RULES
default= all:bw3
0x2c90000000026= 3:bw4

--

QoS Configuration Examples
The following are examples of QoS configuration for different cluster deployments. Each example
provides the QoS level assignment and their administration via OpenSM configuration files.

Typical HPC Example: MPI and Lustre

Assignment of QoS Levels
MPI

Separate from I/O load
Min BW of 70%

Storage Control (Lustre MDS)
Low latency

Storage Data (Lustre OST)
Min BW 30%

Administration
MPI is assigned an SL via the command line
host1# mpirun –sl 0

OpenSM QoS policy file

154

•

•
•
•
•

•
•
•

•

•

•
•
•

•

 qos-ulps
 default :0 # default SL (for MPI)
 any, target-port-guid OST1,OST2,OST3,OST4 :1 # SL for Lustre OST
 any, target-port-guid MDS1,MDS2 :2 # SL for Lustre MDS
 end-qos-ulps

Note: In this policy file example, replace OST* and MDS* with the real port GUIDs.

OpenSM options file

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 2:1
qos_vlarb_low 0:96,1:224
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

EDC SOA (2-tier): IPoIB and SRP

The following is an example of QoS configuration for a typical enterprise data center (EDC) with service
oriented architecture (SOA), with IPoIB carrying all application traffic and SRP used for storage.
QoS Levels

Application traffic
IPoIB (UD and CM) and SDP
Isolated from storage
Min BW of 50%

SRP
Min BW 50%
Bottleneck at storage nodes

Administration
OpenSM QoS policy file

 qos-ulps
 default :0
 ipoib :1
 sdp :1
 srp, target-port-guid SRPT1,SRPT2,SRPT3 :2
 end-qos-ulps

Note: In this policy file example, replace SRPT* with the real SRP Target port GUIDs.
OpenSM options file

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 1:32,2:32
qos_vlarb_low 0:1,
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

EDC (3-tier): IPoIB, RDS, SRP

The following is an example of QoS configuration for an enterprise data center (EDC), with IPoIB
carrying all application traffic, RDS for database traffic, and SRP used for storage.
QoS Levels

Management traffic (ssh)
IPoIB management VLAN (partition A)
Min BW 10%

Application traffic

155

•
•
•

•
•
•

•
•
•

•

•

•

IPoIB application VLAN (partition B)
Isolated from storage and database
Min BW of 30%

Database Cluster traffic
RDS
Min BW of 30%

SRP
Min BW 30%
Bottleneck at storage nodes

Administration
OpenSM QoS policy file

 qos-ulps
 default :0
 ipoib, pkey 0x8001 :1
 ipoib, pkey 0x8002 :2
 rds :3
 srp, target-port-guid SRPT1, SRPT2, SRPT3 :4
 end-qos-ulps

Note: In the following policy file example, replace SRPT* with the real SRP Initiator port GUIDs.

OpenSM options file

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 1:32,2:96,3:96,4:96
qos_vlarb_low 0:1
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

Partition configuration file

Default=0x7fff,ipoib : ALL=full;PartA=0x8001, sl=1, ipoib : ALL=full;

Adaptive Routing Manager and SHIELD
Adaptive Routing Manager supports advanced InfiniBand features; Adaptive Routing (AR) and Self-
Healing Interconnect Enhancement for InteLligent Datacenters (SHIELD).
For information on how to set up AR and SHIELD, please refer to HowTo Configure Adaptive Routing
and SHIELD Community post.

Congestion Control Manager
Congestion Manager works in conjunction with Congestion Control implemented on the Switch.
To verify whether your switch supports Congestion Control, refer to the switches Firmware Release
Notes.
Congestion Control Manager is a Subnet Manager (SM) plug-in, i.e. it is a shared library (libc- cmgr.so)
that is dynamically loaded by the Subnet Manager. Congestion Control Manager is installed as part of
Mellanox OFED installation.
The Congestion Control mechanism controls traffic entry into a network and attempts to avoid over-
subscription of any of the processing or link capabilities of the intermediate nodes and networks.
Additionally, is takes resource reducing steps by reducing the rate of sending packets. Congestion
Control Manager enables and configures Congestion Control mechanism on fabric nodes (HCAs and
switches).

https://community.mellanox.com/s/article/How-To-Configure-Adaptive-Routing-and-SHIELD-New
https://community.mellanox.com/s/article/How-To-Configure-Adaptive-Routing-and-SHIELD-New
http://www.mellanox.com/page/firmware_download
http://www.mellanox.com/page/firmware_download
http://www.mellanox.com/page/firmware_download
http://www.mellanox.com/page/firmware_download
http://www.mellanox.com/page/firmware_download

156

1.

2.

3.

1.

2.

Running OpenSM with Congestion Control Manager
Congestion Control (CC) Manager can be enabled/disabled through SM options file. To do so, perform
the following:

Create the file. Run:

opensm -c <options-file-name>'

Find the 'event_plugin_name' option in the file, and add 'ccmgr' to it.

Event plugin name(s)
event_plugin_name ccmgr

Run the SM with the new options file: 'opensm -F <options-file-name>'

For further information on how to turn OFF CC, please refer to "Configuring Congestion Control
Manager" section below.

Configuring Congestion Control Manager
Congestion Control (CC) Manager comes with a predefined set of setting. However, you can fine-tune
the CC mechanism and CC Manager behavior by modifying some of the options. To do so, perform the
following:

Find the 'event_plugin_options' option in the SM options file, and add the following:

conf_file <cc-mgr-options-file-name>':
Options string that would be passed to the plugin(s)
event_plugin_options ccmgr --conf_file <cc-mgr-options-file-name>

Run the SM with the new options file: 'opensm-F<options-file-name>'.

For further details on the list of CC Manager options, please refer to the IB spec.

Configuring Congestion Control Manager Main Settings
To fine-tune CC mechanism and CC Manager behavior, and set the CC manager main settings, enable/
disable Congestion Control mechanism on the fabric nodes, set the following

Parameter Values Default

enable <TRUE|FALSE> TRUE

Once the Congestion Control is enabled on the fabric nodes, to completely disable Congestion
Control, you will need to actively turn it off. Running the SM w/o the CC Manager is not
sufficient, as the hardware still continues to function in accordance to the previous CC
configuration.

To turn CC OFF, set 'enable' to 'FALSE' in the Congestion Control Manager configuration file,
and run OpenSM ones with this configuration.

157

•

•

•

•

•

•

CC manager configures CC mechanism behavior based on the fabric size. The larger the fabric
is, the more aggressive CC mechanism is in its response to congestion. To manually modify CC
manager behavior by providing it with an arbitrary fabric size, set the following parameter:

Parameter Values Default

num_hosts [0-48K] 0 (based on the CCT calculation on the current subnet size)

The smaller the number value of the parameter, the faster HCAs will respond to the congestion
and will throttle the traffic. Note that if the number is too low, it will result in suboptimal
bandwidth. To change the mean number of packets between marking eligible packets with a
FECN, set the following parameter:

Parameter Values Default

marking_rate [0-0xffff] 0xa

You can set the minimal packet size that can be marked with FECN. Any packet less than this
size [bytes] will not be marked with FECN. To do so, set the following parameter:

Parameter Values Default

packet_size [0-0x3fc0] 0x200

When number of errors exceeds 'max_errors' of send/receive errors or timeouts in less than
'error_window' seconds, the CC MGR will abort and will allow OpenSM to proceed. To do so, set
the following parameters:

Parameter Values Default

max_errors 0: zero tollerance - abort configuration on first error

error_window 0: mechanism disabled - no error checking.[0-48K] 5

Congestion Control Manager Options File

Option
File

Description Values Default Value

enable Enables/disables Congestion Control mechanism
on the fabric nodes.

<TRUE | FALSE> TRUE

num_host
s

Indicates the number of nodes. The CC table
values are calculated based on this number.

[0-48K] 0 (base on the CCT
calculation on the
current subnet size)

threshold Indicates how aggressive the congestion mark-
ing should be.

[0-0xf]

0 - no packet
marking
0xf - very
aggressive

0xf

marking_r
ate

The mean number of packets between marking
eligible packets with a FECN

[0-0xffff] 0xa

packet_siz
e

Any packet less than this size [bytes] will not be
marked with FECN.

[0-0x3fc0] 0x200

158

•

•

•

•

1.
2.

Option
File

Description Values Default Value

port_contr
ol

Specifies the Congestion Control attribute for this
port

0 - QP based
congestion
control
1 - SL/Port
based
congestion
control

0

ca_control
_- map

An array of sixteen bits, one for each SL. Each bit
indicates whether or not the corresponding SL
entry is to be modified.

0xffff

ccti_incre
ase

Sets the CC Table Index (CCTI) increase. 1

trigger_th
reshold

Sets the trigger threshold. 2

ccti_min Sets the CC Table Index (CCTI) minimum. 0

cct Sets all the CC table entries to a specified value .
The first entry will remain 0, whereas last value
will be set to the rest of the table.

Values: <comma-
separated list>

0

When the value is set
to 0, the CCT
calculation is based
on the number of
nodes.

ccti_timer Sets for all SL's the given ccti timer. 0

When the value is set
to 0, the CCT
calculation is based
on the number of
nodes.

max_error
s
error_win
dow

When number of errors exceeds 'max_errors' of
send/receive errors or time outs in less than
'error_window' seconds, the CC MGR will abort
and will allow OpenSM to proceed.

max_errors =
0: zero
tolerance -
abort
configuration
on first error.
error_window =
0: mechanism
disabled - no
error checking.

5

DOS MAD Prevention
DOS MAD prevention is achieved by assigning a threshold for each agent's RX. Agent's RX threshold
provides a protection mechanism to the host memory by limiting the agents' RX with a threshold.
Incoming MADs above the threshold are dropped and are not queued to the agent's RX.

To enable DOS MAD Prevention:
Go to /etc/modprobe.d/mlnx.conf.
Add to the file the option below.

159

ib_umad enable_rx_threshold 1

The threshold value can be controlled from the user-space via libibumad.
To change the value, use the following API:

int umad_update_threshold(int fd, int threshold);

@fd: file descriptor, agent's RX associated to this fd.
@threshold: new threshold value

MAD Congestion Control
The SA Management Datagrams (MAD) are General Management Packets (GMP) used to communicate
with the SA entity within the InfiniBand subnet. SA is normally part of the subnet manager, and it is
contained within a single active instance. Therefore, congestion on the SA communication level may
occur.
Congestion control is done by allowing max_outstanding MADs only, where outstanding MAD means
that is has no response yet. It also holds a FIFO queue that holds the SA MADs that their sending is
delayed due to max_outstanding overflow.
The length of the queue is queue_size and meant to limit the FIFO growth beyond the machine memory
capabilities. When the FIFO is full, SA MADs will be dropped, and the drops counter will increment
accordingly.
When time expires (time_sa_mad) for a MAD in the queue, it will be removed from the queue and the
user will be notified of the item expiration.
This features is implemented per CA port.
The SA MAD congestion control values are configurable using the following sysfs entries:

/sys/class/infiniband/mlx5_0/mad_sa_cc/
├── 1
│ ├── drops
│ ├── max_outstanding
│ ├── queue_size
│ └── time_sa_mad
└── 2
├── drops
├── max_outstanding
├── queue_size
└── time_sa_mad

To print the current value:

cat /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding 16

To change the current value:

echo 32 > /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding
cat /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding
32

To reset the drops counter:

160

•

•
•
•
•

•
•

echo 0 > /sys/class/infiniband/mlx5_0/mad_sa_cc/1/drops

Parameters' Valid Ranges

Parameter Range Default Values

MIN MAX

max_oustanding 1 2^20 16

queue_size 16 2^20 16

time_sa_mad 1 milliseconds 10000 20 milliseconds

IB Router Support in OpenSM
In order to enable the IB router in OpenSM, the following parameters should be configured:
IB Router Parameters for OpenSM

Parameter Description Default Value

rtr_pr_flow_l
abel

Defines whether the SM should create alias GUIDs required for
router support for each port.

Defines flow label value to use in response for path records
related to the router.

0 (Disabled)

rtr_pr_tclass Defines TClass value to use in response for path records related
to the router

0

rtr_pr_sl Defines sl value to use in response for path records related to
router.

0

rtr_p_mtu Defines MTU value to use in response for path records related to
the router.

4 (IB_MTU_LEN_2048)

rtr_pr_rate Defines rate value to use in response for path records related to
the router.

16 (IB_PATH_RE-
CORD_RATE_100_GBS)

OpenSM Activity Report
OpenSM can produce an activity report in a form of a dump file which details the different activities
done in the SM. Activities are divided into subjects. The OpenSM Supported Activities table below
specifies the different activities currently supported in the SM activity report.
Reporting of each subject can be enabled individually using the configuration parameter activity_rep
ort_subjects:

Valid values:
Comma separated list of subjects to dump. The current supported subjects are:

"mc" - activity IDs 1, 2 and 8
"prtn" - activity IDs 3, 4, and 5
"virt" - activity IDs 6 and 7
"routing" - activity IDs 8-12

Two predefined values can be configured as well:
"all" - dump all subjects
"none" - disable the feature by dumping none of the subjects

161

•

•
•
•
•

•
•
•

•
•
•
•

•

•
•

•
•

•
•
•
•
•

Default value: "none"

OpenSM Supported Activities

ACtivity ID Activity Name Additional Fields Comments Description

1 mcm_member MLid
MGid
Port Guid
Join State

Join state:

1 - Join

-1 - Leave

Member joined/ left MC
group

2 mcg_change MLid
MGid
Change

Change:

0 - Create
1 - Delete

MC group created/
deleted

3 prtn_guid_add Port Guid
PKey
Block index
Pkey Index

Guid added to partition

4 prtn_create -PKey

Prtn Name

Partition created

5 prtn_delete PKey
Delete
Reason

Delete Reason:

0 - empty prtn

1 - duplicate prtn

2 - sm shutdown

Partition deleted

6 port_virt_discover Port Guid
Top Index

Port virtualization
discovered

7 vport_state_change Port Guid
VPort Guid
VPort Index
VNode Guid
VPort State

VPort State:

1 - Down

2 - Init

3 - ARMED

4 - Active

Vport state changed

8 mcg_tree_calc mlid MCast group tree
calculated

9 routing_succeed routing engine name Routing done
successfully

10 routing_failed routing engine name Routing failed

11 ucast_cache_invali-
dated

ucast cache invalidated

12 ucast_cache_rout-
ing_done

ucast cache routing
done

Offsweep Balancing
When working with minhop/dor/updn, subnet manager can re-balance routing during idle time
(between sweeps).

162

•
•
•

•

•

•
•

•

offsweep_balancing_enabled - enables/disables the feature. Examples:
offsweep_balancing_enabled = TRUE
offsweep_balancing_enabled = FALSE (default)

offsweep_balancing_window - defines window of seconds to wait after sweep before starting the
re-balance process. Applicable only if offsweep_balancing_enabled=TRUE. Example:
offsweep_balancing_window = 180 (default)

QoS - Quality of Service
Quality of Service (QoS) requirements stem from the realization of I/O consolidation over an IB network.
As multiple applications and ULPs share the same fabric, a means is needed to control their use of
network resources.

The basic need is to differentiate the service levels provided to different traffic flows, such that a policy
can be enforced and can control each flow utilization of fabric resources.
The InfiniBand Architecture Specification defines several hardware features and management
interfaces for supporting QoS:
Up to 15 Virtual Lanes (VL) carry traffic in a non-blocking manner

Arbitration between traffic of different VLs is performed by a two-priority-level weighted round
robin arbiter. The arbiter is programmable with a sequence of (VL, weight) pairs and a maximal
number of high priority credits to be processed before low priority is served
Packets carry class of service marking in the range 0 to 15 in their header SL field
Each switch can map the incoming packet by its SL to a particular output VL, based on a
programmable table VL=SL-to-VL-MAP(in-port, out-port, SL)
The Subnet Administrator controls the parameters of each communication flow by providing
them as a response to Path Record (PR) or MultiPathRecord (MPR) queries

DiffServ architecture (IETF RFC 2474 & 2475) is widely used in highly dynamic fabrics. The following
subsections provide the functional definition of the various software elements that enable a DiffServ-
like architecture over the Mellanox OFED software stack.

163

1.

2.

3.

4.

5.

6.

QoS Architecture
QoS functionality is split between the SM/SA, CMA and the various ULPs. We take the "chronology
approach" to describe how the overall system works.

The network manager (human) provides a set of rules (policy) that define how the network is
being configured and how its resources are split to different QoS-Levels. The policy also define
how to decide which QoS-Level each application or ULP or service use.
The SM analyzes the provided policy to see if it is realizable and performs the necessary fab- ric
setup. Part of this policy defines the default QoS-Level of each partition. The SA is enhanced to
match the requested Source, Destination, QoS-Class, Service-ID, PKey against the policy, so
clients (ULPs, programs) can obtain a policy enforced QoS. The SM may also set up partitions
with appropriate IPoIB broadcast group. This broadcast group carries its QoS attributes: SL,
MTU, RATE, and Packet Lifetime.
IPoIB is being setup. IPoIB uses the SL, MTU, RATE and Packet Lifetime available on the
multicast group which forms the broadcast group of this partition.
MPI which provides non IB based connection management should be configured to run using
hard coded SLs. It uses these SLs for every QP being opened.
ULPs that use CM interface (like SRP) have their own pre-assigned Service-ID and use it while
obtaining PathRecord/MultiPathRecord (PR/MPR) for establishing connections. The SA receiving
the PR/MPR matches it against the policy and returns the appropriate PR/MPR including SL,
MTU, RATE and Lifetime.
ULPs and programs (e.g. SDP) use CMA to establish RC connection provide the CMA the target
IP and port number. ULPs might also provide QoS-Class. The CMA then creates Service-ID for
the ULP and passes this ID and optional QoS-Class in the PR/MPR request. The resulting PR/
MPR is used for configuring the connection QP.

PathRecord and Multi Path Record Enhancement for QoS:
As mentioned above, the PathRecord and MultiPathRecord attributes are enhanced to carry the
Service-ID which is a 64bit value. A new field QoS-Class is also provided.
A new capability bit describes the SM QoS support in the SA class port info. This approach provides an
easy migration path for existing access layer and ULPs by not introducing new set of PR/MPR
attributes.

Supported Policy
The QoS policy, which is specified in a stand-alone file, is divided into the following four subsections:

Port Group
A set of CAs, Routers or Switches that share the same settings. A port group might be a partition
defined by the partition manager policy, list of GUIDs, or list of port names based on NodeDescription.

Fabric Setup
Defines how the SL2VL and VLArb tables should be set up.

QoS-Levels Definition
This section defines the possible sets of parameters for QoS that a client might be mapped to. Each set
holds SL and optionally: Max MTU, Max Rate, Packet Lifetime and Path Bits.

In OFED this part of the policy is ignored. SL2VL and VLArb tables should be configured in the
OpenSM options file (opensm.opts).

164

•
•
•

•
•
•

•
•

•
•
•
•

•
•

Matching Rules
A list of rules that match an incoming PR/MPR request to a QoS-Level. The rules are processed in
order such as the first match is applied. Each rule is built out of a set of match expressions which
should all match for the rule to apply. The matching expressions are defined for the following fields:

SRC and DST to lists of port groups
Service-ID to a list of Service-ID values or ranges
QoS-Class to a list of QoS-Class values or ranges

CMA Features
The CMA interface supports Service-ID through the notion of port space as a prefix to the port number,
which is part of the sockaddr provided to rdma_resolve_add(). The CMA also allows the ULP (like SDP)
to propagate a request for a specific QoS-Class. The CMA uses the provided QoS-Class and Service-ID
in the sent PR/MPR.

IPoIB
IPoIB queries the SA for its broadcast group information and uses the SL, MTU, RATE and Packet
Lifetime available on the multicast group which forms this broadcast group.

SRP
The current SRP implementation uses its own CM callbacks (not CMA). So SRP fills in the Service-ID in
the PR/MPR by itself and use that information in setting up the QP.
SRP Service-ID is defined by the SRP target I/O Controller (it also complies with IBTA Service- ID
rules). The Service-ID is reported by the I/O Controller in the ServiceEntries DMA attribute and should
be used in the PR/MPR if the SA reports its ability to handle QoS PR/MPRs.

IP over InfiniBand (IPoIB)

Upper Layer Protocol (ULP)
The IP over IB (IPoIB) ULP driver is a network interface implementation over InfiniBand. IPoIB
encapsulates IP datagrams over an InfiniBand Connected or Datagram transport service. The IPoIB
driver, ib_ipoib, exploits the following capabilities:

VLAN simulation over an InfiniBand network via child interfaces
High Availability via Bonding
Varies MTU values:

up to 4k in Datagram mode
up to 64k in Connected mode

Uses any ConnectX® IB ports (one or two)
Inserts IP/UDP/TCP checksum on outgoing packets
Calculates checksum on received packets
Support net device TSO through ConnectX® LSO capability to defragment large data- grams to
MTU quantas.
Dual operation mode - datagram and connected
Large MTU support through connected mode

Path Bits are not implemented in OFED.

165

•
•
•

•
•
•
•
•
•
•

IPoIB also supports the following software based enhancements:
Giant Receive Offload
NAPI
Ethtool support

Enhanced IPoIB

Enhanced IPoIB feature enables offloading ULP basic capabilities to a lower vendor specific driver, in
order to optimize IPoIB data path. This will allow IPoIB to support multiple stateless offloads, such as
RSS/TSS, and better utilize the features supported, enabling IPoIB datagram to reach peak
performance in both bandwidth and latency.
Enhanced IPoIB supports/performs the following:

Stateless offloads (RSS, TSS)
Multi queues
Interrupt moderation
Multi partitions optimizations
Sharing send/receive Work Queues
Vendor specific optimizations
UD mode only

In order to verify that the driver is using Enhanced IPoIB, run:

ip link show ibX

Output example:

8: ib1: <BROADCAST,MULTICAST> mtu 4092 qdisc noop state DOWN mode DEFAULT qlen
1024
link/infiniband 00:00:00:67:fe:80:00:00:00:00:00:00:e4:1d:2d:03:00:a5:f0:2f brd
00:ff:ff:ff:ff:12:40:1b:ff:ff:00:00:00:00:00:00:ff:ff:ff:ff

Note: The driver MAC should start with 00:xxxxxxx (Upstream) or 20:xxxxxxx (OFED) in case Enhanced
IPoIB is enabled.

IPoIB Mode Setting
IPoIB ULP can run in two modes of operation: Connected mode and Datagram mode. By default, IPoIB
ULP is set to work in Datagram mode.
For better scalability and performance, we recommend using the Datagram mode. However, the mode
can be changed to Connected mode by editing the file /etc/infiniband/openib.conf and setting
'SET_IPOIB_CM=yes'.
After changing the mode, you need to restart the driver by running:

/etc/init.d/openibd restart

To check the current mode used for out-going connections, enter:

cat /sys/class/net/ib<n>/mode

Note that switching between Enhanced mode and ULP mode can be done by setting ib_ipoib
module parameter “ipoib_enhanced” to 1 or 0.

166

•

•

Port Configuration
The physical port MTU in Datagram mode (indicates the port capability) default value is 4k, whereas the
IPoIB port MTU ("logical" MTU) default value is 2k as it is set by the OpenSM.
To change the IPoIB MTU to 4k, edit the OpenSM partition file in the section of IPoIB setting as follow:

Default=0xffff, ipoib, mtu=5 : ALL=full;

where:
"mtu=5" indicates that all IPoIB ports in the fabric are using 4k MTU, ("mtu=4" indi- cates 2k MTU)

IPoIB Configuration
Unless you have run the installation script mlnxofedinstall with the flag '-n', then IPoIB has not been
configured by the installation. The configuration of IPoIB requires assigning an IP address and a subnet
mask to each HCA port, like any other network adapter card (i.e., you need to prepare a file called ifcfg-
ib<n> for each port). The first port on the first HCA in the host is called interface ib0, the second port is
called ib1, and so on.
IPoIB configuration can be based on DHCP or on a static configuration that you need to supply (see
below). You can also apply a manual configuration that persists only until the next reboot or driver
restart (see below).

IPoIB Configuration Based on DHCP
Setting an IPoIB interface configuration based on DHCP is performed similarly to the configuration of
Ethernet interfaces. In other words, you need to make sure that IPoIB configuration files include the
following line:

For RedHat:

BOOTPROTO=dhcp

For SLES:

BOOTPROTO='dchp'

Changing the IPoIB mode (CM vs UD) requires the interface to be in 'down' state.

Connected mode is not supported when using enhanced IPoIB.

If IPoIB configuration files are included, ifcfg-ib<n> files will be installed under:

/etc/sysconfig/network-scripts/ on a RedHat machine
/etc/sysconfig/network/ on a SuSE machine.

A patch for DHCP may be required for supporting IPoIB. For further information, please
see the REAME file available under the docs/dhcp/ directory.

167

Standard DHCP fields holding MAC addresses are not large enough to contain an IPoIB hardware
address. To overcome this problem, DHCP over InfiniBand messages convey a client identifier field
used to identify the DHCP session. This client identifier field can be used to associate an IP address
with a client identifier value, such that the DHCP server will grant the same IP address to any client
that conveys this client identifier.
The length of the client identifier field is not fixed in the specification. For the Mellanox OFED for Linux
package, it is recommended to have IPoIB use the same format that FlexBoot uses for this client
identifier.

DHCP Server
In order for the DHCP server to provide configuration records for clients, an appropriate configuration
file needs to be created. By default, the DHCP server looks for a configuration file called dhcpd.conf
under /etc. You can either edit this file or create a new one and provide its full path to the DHCP server
using the -cf flag (See a file example at docs/dhcpd.conf).
The DHCP server must run on a machine which has loaded the IPoIB module. To run the DHCP server
from the command line, enter:

dhcpd <IB network interface name> -d

Example:

host1# dhcpd ib0 -d

DHCP Client (Optional)

 In order to use a DHCP client identifier, you need to first create a configuration file that defines the
DHCP client identifier.
Then run the DHCP client with this file using the following command:

dhclient –cf <client conf file> <IB network interface name>

Example of a configuration file for the ConnectX (PCI Device ID 26428), called dhclient.conf:

The value indicates a hexadecimal number interface "ib1" {
send dhcp-client-identifier
ff:00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:03:00:00:10:39;
}

Example of a configuration file for InfiniHost III Ex (PCI Device ID 25218), called dhclient.conf:

The value indicates a hexadecimal number interface "ib1" {
send dhcp-client-identifier
20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;
}

In order to use the configuration file, run:

host1# dhclient –cf dhclient.conf ib1

A DHCP client can be used if you need to prepare a diskless machine with an IB driver.

168

•
•

1.

2.

Static IPoIB Configuration
If you wish to use an IPoIB configuration that is not based on DHCP, you need to supply the installation
script with a configuration file (using the ‘-n’ option) containing the full IP configuration. The IPoIB
configuration file can specify either or both of the following data for an IPoIB interface:

A static IPoIB configuration
An IPoIB configuration based on an Ethernet configuration
See your Linux distribution documentation for additional information about configuring IP
addresses.

The following code lines are an excerpt from a sample IPoIB configuration file:

Static settings; all values provided by this file
IPADDR_ib0=11.4.3.175
NETMASK_ib0=255.255.0.0
NETWORK_ib0=11.4.0.0
BROADCAST_ib0=11.4.255.255
ONBOOT_ib0=1
Based on eth0; each '*' will be replaced with a corresponding octet
from eth0.
LAN_INTERFACE_ib0=eth0
IPADDR_ib0=11.4.'*'.'*'
NETMASK_ib0=255.255.0.0
NETWORK_ib0=11.4.0.0
BROADCAST_ib0=11.4.255.255
ONBOOT_ib0=1
Based on the first eth<n> interface that is found (for n=0,1,...);
each '*' will be replaced with a corresponding octet from eth<n>.
LAN_INTERFACE_ib0=
IPADDR_ib0=11.4.'*'.'*'
NETMASK_ib0=255.255.0.0
NETWORK_ib0=11.4.0.0
BROADCAST_ib0=11.4.255.255
ONBOOT_ib0=1

Manually Configuring IPoIB

 To manually configure IPoIB for the default IB partition (VLAN), perform the following steps:
Configure the interface by entering the ifconfig command with the following items:
- The appropriate IB interface (ib0, ib1, etc.)
- The IP address that you want to assign to the interface
- The netmask keyword
- The subnet mask that you want to assign to the interface
The following example shows how to configure an IB interface:

host1$ ifconfig ib0 11.4.3.175 netmask 255.255.0.0

(Optional) Verify the configuration by entering the ifconfig command with the appropriate
interface identifier ib# argument.
The following example shows how to verify the configuration:

This manual configuration persists only until the next reboot or driver restart.

169

3.

•
•

1.

2.

3.

4.

5.

host1$ ifconfig ib0
b0 Link encap:UNSPEC HWaddr 80-00-04-04-FE-80-00-00-00-00-00-00-00-00-00-0
0
inet addr:11.4.3.175 Bcast:11.4.255.255 Mask:255.255.0.0
UP BROADCAST MULTICAST MTU:65520 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:128
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Repeat the first two steps on the remaining interface(s).

Sub-interfaces
You can create sub-interfaces for a primary IPoIB interface to provide traffic isolation. Each such sub-
interface (also called a child interface) has a different IP and network addresses from the primary
(parent) interface. The default Partition Key (PKey), ff:ff, applies to the primary (parent) interface.
This section describes how to:

Create a subinterface
Remove a subinterface

Creating a Subinterface
In the following procedure, ib0 is used as an example of an IB sub-interface.

To create a child interface (sub-interface), follow this procedure:
Decide on the PKey to be used in the subnet (valid values can be 0 or any 16-bit unsigned value).
The actual PKey used is a 16-bit number with the most significant bit set. For example, a value
of 1 will give a PKey with the value 0x8001.
Create a child interface by running:

host1$ echo <PKey> > /sys/class/net/<IB subinterface>/create_child

Example:

host1$ echo 1 > /sys/class/net/ib0/create_child

This will create the interface ib0.8001.
Verify the configuration of this interface by running:

host1$ ifconfig <subinterface>.<subinterface PKey>

Using the example of the previous step:

host1$ ifconfig ib0.8001
ib0.8001 Link encap:UNSPEC HWaddr 80-00-00-4A-FE-80-00-00-00-00-00-00-00-0
0-00-00
BROADCAST MULTICAST MTU:2044 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:128
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

As can be seen, the interface does not have IP or network addresses. To configure those, you
should follow the manual configuration procedure described in "Manually Configuring IPoIB"
section above.
To be able to use this interface, a configuration of the Subnet Manager is needed so that the
PKey chosen, which defines a broadcast address, be recognized.

170

1.

2.
3.

•
•

•

•

Removing a Subinterface

To remove a child interface (subinterface), run:

echo <subinterface PKey> /sys/class/net/<ib_interface>/delete_child

Using the example of the second step from the previous chapter:

echo 0x8001 > /sys/class/net/ib0/delete_child

Note that when deleting the interface you must use the PKey value with the most significant bit set
(e.g., 0x8000 in the example above).

Verifying IPoIB Functionality
To verify your configuration and IPoIB functionality are successful, perform the following steps:

Verify the IPoIB functionality by using the ifconfig command.
The following example shows how two IB nodes are used to verify IPoIB functionality. In the
following example, IB node 1 is at 11.4.3.175, and IB node 2 is at 11.4.3.176:

host1# ifconfig ib0 11.4.3.175 netmask 255.255.0.0
host2# ifconfig ib0 11.4.3.176 netmask 255.255.0.0

Enter the ping command from 11.4.3.175 to 11.4.3.176.
The following example shows how to enter the ping command:

host1# ping -c 5 11.4.3.176
PING 11.4.3.176 (11.4.3.176) 56(84) bytes of data.
64 bytes from 11.4.3.176: icmp_seq=0 ttl=64 time=0.079 ms
64 bytes from 11.4.3.176: icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from 11.4.3.176: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 11.4.3.176: icmp_seq=3 ttl=64 time=0.049 ms
64 bytes from 11.4.3.176: icmp_seq=4 ttl=64 time=0.065 ms
--- 11.4.3.176 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3999ms rtt min/avg/
max/mdev = 0.044/0.058/0.079/0.014 ms, pipe 2

Bonding IPoIB
To create an interface configuration script for the ibX and bondX interfaces, you should use the
standard syntax (depending on your OS).
Bonding of IPoIB interfaces is accomplished in the same manner as would bonding of Ethernet
interfaces: via the Linux Bonding Driver.

Network Script files for IPoIB slaves are named after the IPoIB interfaces (e.g: ifcfg- ib0)
The only meaningful bonding policy in IPoIB is High-Availability (bonding mode number 1, or
active-backup)
Bonding parameter "fail_over_mac" is meaningless in IPoIB interfaces, hence, the only
supported value is the default: 0

For a persistent bonding IPoIB Network configuration, use the same Linux Network Scripts semantics,
with the following exceptions/ additions:

In the bonding master configuration file (e.g: ifcfg-bond0), in addition to Linux bonding
semantics, use the following parameter: MTU=65520

171

•

•

•

•

Dynamically Connected Transport (DCT)

In the bonding slave configuration file (e.g: ifcfg-ib0), use the same Linux Network Scripts
semantics. In particular: DEVICE=ib0
In the bonding slave configuration file (e.g: ifcfg-ib0.8003), the line TYPE=InfiniBand is necessary
when using bonding over devices configured with partitions (p_key)
For RHEL users:
In /etc/modprobe.b/bond.conf add the following lines:

alias bond0 bonding

For SLES users:
It is necessary to update the MANDATORY_DEVICES environment variable in /etc/sysconfig/
network/config with the names of the IPoIB slave devices (e.g. ib0, ib1, etc.). Otherwise, bonding
master may be created before IPoIB slave interfaces at boot time.
It is possible to have multiple IPoIB bonding masters and a mix of IPoIB bonding master and
Ethernet bonding master. However, It is NOT possible to mix Ethernet and IPoIB slaves under
the same bonding master.

Dynamic PKey Change
Dynamic PKey change means the PKey can be changed (add/removed) in the SM database and the
interface that is attached to that PKey is updated immediately without the need to restart the driver.
If the PKey is already configured in the port by the SM, the child-interface can be used immediately. If
not, the interface will be ready to use only when SM adds the relevant PKey value to the port after the
creation of the child interface. No additional configuration is required once the child-interface is
created.

Precision Time Protocol (PTP) over IPoIB
This feature allows for accurate synchronization between the distributed entities over the network. The
synchronization is based on symmetric Round Trip Time (RTT) between the master and slave devices.
This feature is enabled by default, and is also supported over PKey interfaces.
For more on the PTP feature, refer to Running Linux PTP with ConnectX-4/ConnectX-5 Community
post.
For further information on Time-Stamping, follow the steps in "Time-Stamping Service".

65520 is a valid MTU value only if all IPoIB slaves operate in Connected mode (See "IPoI
B Mode Setting") and are configured with the same value. For IPoIB slaves that work in
datagram mode, use MTU=2044. If you do not set the correct MTU or do not set MTU at
all, performance of the interface might decrease.

Restarting openibd does no keep the bonding configuration via Network Scripts. You have to
restart the network service in order to bring up the bonding master. After the configuration is
saved, restart the network service by running: /etc/init.d/network restart.

https://community.mellanox.com/s/article/running-linux-ptp-with-connectx-4-connectx-5

172

One Pulse Per Second (1PPS) over IPoIB
1PPS is a time synchronization feature that allows the adapter to be able to send or receive 1 pulse per
second on a dedicated pin on the adapter card using an SMA connector (SubMiniature version A). Only
one pin is supported and could be configured as 1PPS in or 1PPS out.
For further information, refer to HowTo Test 1PPS on Mellanox Adapters Community post.

Advanced Transport

Atomic Operations

Atomic Operations in mlx5 Driver
To enable atomic operation with this endianness contradiction, use the ibv_create_qp to create the
QP and set the IBV_QP_CREATE_ATOMIC_BE_REPLY flag on create_flags.

Enhanced Atomic Operations
ConnectX® implements a set of Extended Atomic Operations beyond those defined by the IB spec.
Atomicity guarantees, Atomic Ack generation, ordering rules and error behavior for this set of extended
Atomic operations is the same as that for IB standard Atomic operations (as defined in section 9.4.5 of
the IB spec).

Masked Compare and Swap (MskCmpSwap)

The MskCmpSwap atomic operation is an extension to the CmpSwap operation defined in the IB spec.
MskCmpSwap allows the user to select a portion of the 64 bit target data for the "compare" check, as
well as to restrict the swap to a (possibly different) portion. The pseudo-code below describes the
operation:
The MFetchAdd Atomic operation extends the functionality of the standard IB FetchAdd by allowing the
user to split the target into multiple fields of selectable length. The atomic add is done independently
on each one of this fields. A bit set in the field_boundary parameter specifies the field boundaries. The
pseudo-code below describes the operation:
The additional operands are carried in the Extended Transport Header. Atomic response generation
and packet format for MskCmpSwap is as for standard IB Atomic operations.

 | atomic_response = *va
 | if (!((compare_add ^ *va) & compare_add_mask)) then
 | *va = (*va & ~(swap_mask)) | (swap & swap_mask)
 |
 | return atomic_response

Masked Fetch and Add (MFetchAdd)

The MFetchAdd Atomic operation extends the functionality of the standard IB FetchAdd by allowing the
user to split the target into multiple fields of selectable length. The atomic add is done independently
on each one of this fields. A bit set in the field_boundary parameter specifies the field boundaries. The
pseudocode below describes the operation:

https://community.mellanox.com/s/article/howto-test-1pps-on-mellanox-adapters

173

•
•
•
•
•

 | bit_adder(ci, b1, b2, *co)
 | {
 | value = ci + b1 + b2
 | *co = !!(value & 2)
 |
 | return value & 1
 | }
 |
 | #define MASK_IS_SET(mask, attr) (!!((mask)&(attr)))
 | bit_position = 1
 | carry = 0
 | atomic_response = 0
 |
 | for i = 0 to 63
 | {
 | if (i != 0)
 | bit_position = bit_position << 1
 |
 | bit_add_res = bit_adder(carry, MASK_IS_SET(*va, bit_position),
 | MASK_IS_SET(compare_add, bit_position),
&new_carry)
 | if (bit_add_res)
 | atomic_response |= bit_position
 |
 | carry = ((new_carry) && (!MASK_IS_SET(compare_add_mask,
bit_position)))
 | }
 |
 | return atomic_response

XRC - eXtended Reliable Connected Transport Service for InfiniBand
XRC allows significant savings in the number of QPs and the associated memory resources required to
establish all to all process connectivity in large clusters.
It significantly improves the scalability of the solution for large clusters of multicore end-nodes by
reducing the required resources.
For further details, please refer to the "Annex A14 Supplement to InfiniBand Architecture Specification
Volume 1.2.1"
A new API can be used by user space applications to work with the XRC transport. The legacy API is
currently supported in both binary and source modes, however it is deprecated. Thus we recommend
using the new API.
The new verbs to be used are:

ibv_open_xrcd/ibv_close_xrcd
ibv_create_srq_ex
ibv_get_srq_num
ibv_create_qp_ex
ibv_open_qp

Please use ibv_xsrq_pingpong for basic tests and code reference. For detailed information regarding
the various options for these verbs, please refer to their appropriate man pages.

Dynamically Connected Transport (DCT)
Dynamically Connected transport (DCT) service is an extension to transport services to enable a higher
degree of scalability while maintaining high performance for sparse traffic. Utilization of DCT reduces
the total number of QPs required system wide by having Reliable type QPs dynamically connect and
disconnect from any remote node. DCT connections only stay connected while they are active. This
results in smaller memory footprint, less overhead to set connections and higher on-chip cache
utilization and hence increased performance. DCT is supported only in mlx5 driver.

174

MPI Tag Matching and Rendezvous Offloads

Tag Matching and Rendezvous Offloads is a technology employed by Mellanox to offload the processing
of MPI messages from the host machine onto the network card. Employing this technology enables a
zero copy of MPI messages, i.e. messages are scattered directly to the user's buffer without
intermediate buffering and copies. It also provides a complete rendezvous progress by Mellanox
devices. Such overlap capability enables the CPU to perform the application's computational tasks
while the remote data is gathered by the adapter.
For more information Tag Matching Offload, please refer to the Community post "Understanding MPI
Tag Matching and Rendezvous Offloads (ConnectX-5)".

Optimized Memory Access

Memory Region Re-registration
Memory Region Re-registration allows the user to change attributes of the memory region. The user
may change the PD, access flags or the address and length of the memory region. Memory
region supports contagious pages allocation. Consequently, it de-registers memory region followed by
register memory region. Where possible, resources are reused instead of de-allocated and
reallocated.

Example:

int ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr,
size_t length, uint64_t access, struct ibv_rereg_mr_attr *attr);

@mr: The memory region to modify.

@flags: A bit-mask used to indicate which of the following properties of the memory region are
being modified. Flags should be one of:
IBV_REREG_MR_CHANGE_TRANSLATION /* Change translation (location and length) */
IBV_REREG_MR_CHANGE_PD/* Change protection domain*/
IBV_REREG_MR_CHANGE_ACCESS/* Change access flags*/

@pd: If IBV_REREG_MR_CHANGE_PD is set in flags, this field specifies the new protection
domain to associated with the memory region, otherwise, this parameter is ignored.

@addr: If IBV_REREG_MR_CHANGE_TRANSLATION is set in flags, this field specifies the start
of the virtual address to use in the new translation, otherwise, this parameter is
ignored.

@length: If IBV_REREG_MR_CHANGE_TRANSLATION is set in flags, this field specifies the length
of the virtual address to use in the new translation, otherwise, this parameter is
ignored.

Supported in ConnectX®-5 and above adapter cards.

Please note that the verb is implemented as an experimental verb.

https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x
https://community.mellanox.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x

175

•

•

@access: If IBV_REREG_MR_CHANGE_ACCESS is set in flags, this field specifies the new
memory access rights, otherwise, this parameter is ignored. Could be one of the
following:
IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_ALLOCATE_MR /* Let the library allocate the memory for * the user, tries
to get contiguous pages */

@attr: Future extensions

ibv_rereg_mr returns 0 on success, or the value of an errno on failure (which indicates the error
reason). In case of an error, the MR is in undefined state. The user needs to call ibv_dereg_mr in order
to release it.
Please note that if the MR (Memory Region) is created as a Shared MR and a translation is requested,
after the call, the MR is no longer a shared MR. Moreover, Re-registration of MRs that uses Mellanox
PeerDirect™ technology are not supported.

Memory Window
Memory Window allows the application to have a more flexible control over remote access to its
memory. It is available only on physical functions/native machines The two types of Memory Windows
supported are: type 1 and type 2B.
Memory Windows are intended for situations where the application wants to:

Grant and revoke remote access rights to a registered region in a dynamic fashion with less of a
performance penalty
Grant different remote access rights to different remote agents and/or grant those rights over
different ranges within registered region

For further information, please refer to the InfiniBand specification document.

Query Capabilities
Memory Windows are available if and only the hardware supports it. To verify whether Memory
Windows are available, run ibv_query_device.
For example:

truct ibv_device_attr device_attr = {.comp_mask = IBV_DEVICE_ATTR_RESERVED - 1};
ibv_query_device(context, & device_attr);
if (device_attr.exp_device_cap_flags & IBV_DEVICE_MEM_WINDOW ||
 device_attr.exp_device_cap_flags & IBV_DEVICE_MW_TYPE_2B) {
/* Memory window is supported */

Memory Window Allocation
Allocating memory window is done by calling the ibv_alloc_mw verb.

type_mw = IBV_MW_TYPE_2/ IBV_MW_TYPE_1
mw = ibv_alloc_mw(pd, type_mw);

Memory Windows API cannot co-work with peer memory clients (Mellanox PeerDirect™).

176

•

•

•

•

Binding Memory Windows
After being allocated, memory window should be bound to a registered memory region. Memory
Region should have been registered using the IBV_ACCESS_MW_BIND access flag.
For further information on how to bind memory windows, please see rdma-core man page.

Invalidating Memory Window
Before rebinding Memory Window type 2, it must be invalidated using ibv_post_send - see here.

Deallocating Memory Window
Deallocating memory window is done using the ibv_dealloc_mw verb.

ibv_dealloc_mw(mw);

User-Mode Memory Registration (UMR)
User-mode Memory Registration (UMR) is a fast registration mode which uses send queue. The UMR
support enables the usage of RDMA operations and scatters the data at the remote side through the
definition of appropriate memory keys on the remote side.
UMR enables the user to:

Create indirect memory keys from previously registered memory regions, including creation of
KLM's from previous KLM's. There are not data alignment or length restrictions associated with
the memory regions used to define the new KLM's.
Create memory regions, which support the definition of regular non-contiguous memory
regions.

On-Demand-Paging (ODP)
On-Demand-Paging (ODP) is a technique to alleviate much of the shortcomings of memory
registration. Applications no longer need to pin down the underlying physical pages of the address
space, and track the validity of the mappings. Rather, the HCA requests the latest translations from the
OS when pages are not present, and the OS invalidates translations which are no longer valid due to
either non-present pages or mapping changes. ODP does not support contiguous pages.
ODP can be further divided into 2 subclasses: Explicit and Implicit ODP.

Explicit ODP
In Explicit ODP, applications still register memory buffers for communication, but this operation
is used to define access control for IO rather than pin-down the pages. ODP Memory Region
(MR) does not need to have valid mappings at registration time.

Implicit ODP
In Implicit ODP, applications are provided with a special memory key that represents their
complete address space. This all IO accesses referencing this key (subject to the access rights
associated with the key) does not need to register any virtual address range.

Query Capabilities
On-Demand Paging is available if both the hardware and the kernel support it. To verify whether ODP is
supported, run ibv_query_device.
For further information, please refer to the ibv_query_device manual page.

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_bind_mw.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_wr_post.3.md
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3

177

Registering ODP Explicit and Implicit MR
ODP Explicit MR is registered after allocating the necessary resources (e.g. PD, buffer), while ODP
implicit MR registration provides an implicit lkey that represents the complete address space.
For further information, please refer to the ibv_reg_mr manual page.

De-registering ODP MR
ODP MR is deregistered the same way a regular MR is deregistered:

ibv_dereg_mr(mr);

Advice MR Verb
The driver can pre-fetch a given range of pages and map them for access from the HCA. The advice MR
verb is applicable for ODP MRs only.
For further information, please refer to the ibv_advise_mr manual page.

ODP Statistics
To aid in debugging and performance measurements and tuning, ODP support includes an extensive
set of statistics.
For further information, please refer to rdma-statistics manual page.

Inline-Receive
The HCA may write received data to the Receive CQE. Inline-Receive saves PCIe Read transaction since
the HCA does not need to read the scatter list. Therefore, it improves performance in case of short
receive-messages.
On poll CQ, the driver copies the received data from CQE to the user's buffers.
Inline-Receive is enabled by default and is transparent to the user application. To disable it globally,
set MLX5_SCATTER_TO_CQE environment variable to the value of 0. Otherwise, disable it on a specific
QP using mlx5dv_create_qp() with MLX5DV_QP_CREATE_DISABLE_SCATTER_TO_CQE.
For further information, please refer to the manual page of mlx5dv_create_qp().

Mellanox PeerDirect®
Mellanox PeerDirect® uses an API between IB CORE and peer memory clients, (e.g. GPU cards) to
provide access to an HCA to read/write peer memory for data buffers. As a result, it allows RDMA-
based (over InfiniBand/RoCE) application to use peer device computing power, and RDMA interconnect
at the same time without copying the data between the P2P devices.
For example, Mellanox PeerDirect™ is being used for GPUDirect RDMA.
Detailed description for that API exists under MLNX OFED installation, please see docs/
readme_and_user_manual/PEER_MEMORY_API.txt

Mellanox PeerDirect Async
Mellanox PeerDirect Async sub-system gives PeerDirect hardware devices, such as GPU cards,
dedicated AS accelerators, and so on, the ability to take control over HCA in critical path offloading
CPU. To achieve this, there is a set of verb calls and structures providing application with abstract
description of operation sequences intended to be executed by peer device.

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md
https://man7.org/linux/man-pages/man8/rdma-statistic.8.html

178

•
•

•
•

Mellanox Relaxed Ordering (RSYNC)

In GPU systems with relaxed ordering, RSYNC callback will be invoked to ensure memory consistency.
The registration and implementation of the callback will be done using an external module provided by
the system vendor. Loading the module will register the callback in MLNX_OFED to be used later to
guarantee memory operations order.

CPU Overhead Distribution
When creating a CQ using the ibv_create_cq() API, a "comp_vector" argument is sent. If the value
set for this argument is 0, while the CPU core executing this verb is not equal to zero, the driver
assigns a completion EQ with the least CQs reporting to it. This method is used to distribute CQs
amongst available completions EQ. To assign a CQ to a specific EQ, the EQ needs to be specified in the
comp_vector argument.

Out-of-Order (OOO) Data Placement

Overview
In certain fabric configurations, InfiniBand packets for a given QP may take up different paths in a
network from source to destination. This results into packets being received in an out-of-order
manner. These packets can now be handled instead of being dropped, in order to avoid retransmission,
by:

Achieving better network utilization
Decreasing latency

Data will be placed into host memory in an out-of-order manner when out-of-order messages are
received.
For information on how to set up out-of-order processing by the QP, please refer to HowTo Configure
Adaptive Routing and SHIELD Community post.

IB Router
IB router provides the ability to send traffic between two or more IB subnets thereby potentially
expanding the size of the network to over 40k end-ports, enabling separation and fault resilience
between islands and IB subnets, and enabling connection to different topologies used by different
subnets.
The forwarding between the IB subnets is performed using GRH lookup. The IB router's basic
functionality includes:

Removal of current L2 LRH (local routing header)
Routing

This feature is only supported for ConnectX-5 adapter cards family and above.

•
•
•

This feature is only supported on:

ConnectX-5 adapter cards and above
RC and XRC QPs
DC transport

https://community.mellanox.com/s/article/How-To-Configure-Adaptive-Routing-and-SHIELD-New
https://community.mellanox.com/s/article/How-To-Configure-Adaptive-Routing-and-SHIELD-New

179

•
•

•

•

•

table lookup – using GID from GRH
Building new LRH according to the destination according to the routing table

The DLID in the new LRH is built using simplified GID-to-LID mapping (where LID = 16 LSB bits of GID)
thereby not requiring to send for ARP query/lookup.
Local Unicast GID Format

For this to work, the SM allocates an alias GID for each host in the fabric where the alias GID = {subnet
prefix[127:64], reserved[63:16], LID[15:0}. Hosts should use alias GIDs in order to transmit traffic to
peers on remote subnets.
Host-to-Host IB Router Unicast Flow

For information on the architecture and functionality of IB Router, refer to IB Router
Architecture and Functionality Community post.
For information on IB Router configuration, refer to HowTo Configure IB Routers Community
post.

Storage Protocols
There are several storage protocols that use the advantage of InfiniBand and RDMA for performance
reasons (high throughput, low latency and low CPU utilization). In this chapter we will discuss the
following protocols:

SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol off-load and RDMA
features provided by the InfiniBand architecture.

https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality
https://community.mellanox.com/s/article/ib-router-architecture-and-functionality

180

•

•

•
•

•

•

•

•

iSCSI Extensions for RDMA (iSER) is an extension of the data transfer model of iSCSI, a storage
networking standard for TCP/IP. It uses the iSCSI components while taking the advantage of the
RDMA protocol suite. ISER is implemented on various stor- age targets such as TGT, LIO, SCST
and out of scope of this manual.
For various ISER targets configuration steps, troubleshooting and debugging, as well as other
implementation of storage protocols over RDMA (such as Ceph over RDMA, nbdX and more)
refer to Storage Solutions on Mellanox Community.
Lustre is an open-source, parallel distributed file system, generally used for large-scale cluster
computing that supports many requirements of leadership class HPC simulation environments.
NVM Express™ over Fabrics (NVME-oF)

NVME-oF is a technology specification for networking storage designed to enable NVMe
message-based commands to transfer data between a host computer and a target solid-
state storage device or system over a network such as Ethernet, Fibre Channel, and
InfiniBand. Tunneling NVMe commands through an RDMA fabric provides a high
throughput and a low latency. This is an alternative to the SCSi based storage networking
protocols.
NVME-oF Target Offload is an implementation of the new NVME-oF standard Target
(server) side in hardware. Starting from ConnectX-5 family cards, all regular IO requests
can be processed by the HCA, with the HCA sending IO requests directly to a real NVMe
PCI device, using peer-to-peer PCI communications. This means that excluding
connection management and error flows, no CPU utilization will be observed during
NVME-oF traffic.
For further information, please refer to Storage Solutions on Mellanox Community (https:
//community.mellanox.com).

SRP - SCSI RDMA Protocol
The SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol offload and RDMA
features provided by the InfiniBand architecture. SRP allows a large body of SCSI software to be readily
used on InfiniBand architecture. The SRP Initiator controls the connection to an SRP Target in order to
provide access to remote storage devices across an InfiniBand fabric. The kSRP Target resides in an IO
unit and provides storage services.

SRP Initiator
This SRP Initiator is based on open source from OpenFabrics (www.openfabrics.org) that implements
the SCSI RDMA Protocol-2 (SRP-2). SRP-2 is described in Document # T10/1524-D available from
http://www.t10.org.
The SRP Initiator supports

Basic SCSI Primary Commands -3 (SPC-3)
(www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf)
Basic SCSI Block Commands -2 (SBC-2)
(www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf)
Basic functionality, task management and limited error handling

Loading SRP Initiator

To load the SRP module either:

This package, however, does not include an SRP Target.

https://community.mellanox.com
https://community.mellanox.com
http://www.openfabrics.org
http://www.t10.org
http://www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf
http://www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf

181

•

1.
2.

•
•
•
•

Execute the modprobe ib_srp command after the OFED driver is up.

or
Change the value of SRP_LOAD in /etc/infiniband/openib.conf to “yes”.
Run /etc/init.d/openibd restart for the changes to take effect.

SRP Module Parameters
When loading the SRP module, the following parameters can be set (viewable by the "modinfo ib_srp"
command):
cmd_sg_entr
ies

Default number of gather/scatter entries in the SRP command (default is 12, max 255)

allow_ext_s
g

Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the
request when false (default false)

topspin_wor
karounds

Enable workarounds for Topspin/Cisco SRP target bugs

reconnect_d
elay

Time between successive reconnect attempts. Time between successive reconnect attempts of
SRP initiator to a disconnected target until dev_loss_tmo timer expires (if enabled), after that
the SCSI target will be removed

fast_io_fai
l_tmo

Number of seconds between the observation of a transport layer error and failing all I/O.
Increasing this timeout allows more tolerance to transport errors, however, doing so increases
the total failover time in case of serious transport failure.

Note: fast_io_fail_tmo value must be smaller than the value of recon- nect_delay

dev_loss_tm
o

Maximum number of seconds that the SRP transport should insulate transport layer errors.
After this time has been exceeded the SCSI target is removed. Normally it is advised to set this
to -1 (disabled) which will never remove the scsi_host. In deployments where different SRP
targets are connected and disconnected frequently, it may be required to enable this timeout in
order to clean old scsi_hosts representing targets that no longer exists

Constraints between parameters:
dev_loss_tmo, fast_io_fail_tmo, reconnect_delay cannot be all disabled or negative values.
reconnect_delay must be positive number.
fast_io_fail_tmo must be smaller than SCSI block device timeout.
fast_io_fail_tmo must be smaller than dev_loss_tmo.

SRP Remote Ports Parameters
Several SRP remote ports parameters are modifiable online on existing connection.

To modify dev_loss_tmo to 600 seconds:

echo 600 > /sys/class/srp_remote_ports/port-xxx/dev_loss_tmo

To modify fast_io_fail_tmo to 15 seconds:

When loading the ib_srp module, it is possible to set the module parameter
srp_sg_tablesize. This is the maximum number of gather/scatter entries per I/O (default:
12).

182

•

•

•
•
•

•
•
•

•
•

•

•

•

•

•

echo 15 > /sys/class/srp_remote_ports/port-xxx/fast_io_fail_tmo

To modify reconnect_delay to 10 seconds:

echo 20 > /sys/class/srp_remote_ports/port-xxx/reconnect_delay

Manually Establishing an SRP Connection
The following steps describe how to manually load an SRP connection between the Initiator and an SRP
Target. “Automatic Discovery and Connection to Targets” section explains how to do this automatically.

Make sure that the ib_srp module is loaded, the SRP Initiator is reachable by the SRP Target,
and that an SM is running.
To establish a connection with an SRP Target and create an SRP (SCSI) device for that target
under /dev, use the following command:

echo -n id_ext=[GUID value],ioc_guid=[GUID value],dgid=[port GID value],\
pkey=ffff,service_id=[service[0] value] > \
/sys/class/infiniband_srp/srp-mlx[hca number]-[port number]/add_target

See “SRP Tools - ibsrpdm, srp_daemon and srpd Service Script” section for instructions on how the
parameters in this echo command may be obtained.
Notes:

Execution of the above “echo” command may take some time
The SM must be running while the command executes
It is possible to include additional parameters in the echo command:

max_cmd_per_lun - Default: 62
max_sect (short for max_sectors) - sets the request size of a command
io_class - Default: 0x100 as in rev 16A of the specification (In rev 10 the default was
0xff00)
tl_retry_count - a number in the range 2..7 specifying the IB RC retry count. Default: 2
comp_vector, a number in the range 0..n-1 specifying the MSI-X completion vector. Some
HCA's allocate multiple (n) MSI-X vectors per HCA port. If the IRQ affinity masks of these
interrupts have been configured such that each MSI-X interrupt is handled by a different
CPU then the comp_vector parameter can be used to spread the SRP completion
workload over multiple CPU's.
cmd_sg_entries, a number in the range 1..255 that specifies the maximum number of
data buffer descriptors stored in the SRP_CMD information unit itself. With
allow_ext_sg=0 the parameter cmd_sg_entries defines the maximum S/G list length for a
single SRP_CMD, and commands whose S/G list length exceeds this limit after S/G list
collapsing will fail.
initiator_ext - see "Multiple Connections from Initiator InfiniBand Port to the Target"
section.

To list the new SCSI devices that have been added by the echo command, you may use either of
the following two methods:

Execute “fdisk -l”. This command lists all devices; the new devices are included in this
listing.
Execute “dmesg” or look at /var/log/messages to find messages with the names of the
new devices.

183

SRP sysfs Parameters
Interface for making ib_srp connect to a new target. One can request ib_srp to connect to a new target
by writing a comma-separated list of login parameters to this sysfs attribute. The supported
parameters are:
id_ext A 16-digit hexadecimal number specifying the eight byte identifier extension in the 16-byte SRP

target port identifier. The target port identifier is sent by ib_srp to the target in the
SRP_LOGIN_REQ request.

ioc_guid A 16-digit hexadecimal number specifying the eight byte I/O controller GUID portion of the 16-
byte target port identifier.

dgid A 32-digit hexadecimal number specifying the destination GID.

pkey A four-digit hexadecimal number specifying the InfiniBand partition key.

service_id A 16-digit hexadecimal number specifying the InfiniBand service ID used to establish
communication with the SRP target. How to find out the value of the service ID is specified in the
documentation of the SRP target.

max_sect A decimal number specifying the maximum number of 512-byte sectors to be transferred via a
single SCSI command.

max_cmd_pe
r_lun

A decimal number specifying the maximum number of outstanding commands for a single LUN.

io_class A hexadecimal number specifying the SRP I/O class. Must be either 0xff00 (rev 10) or 0x0100 (rev
16a). The I/O class defines the format of the SRP initiator and target port identifiers.

initiator_ext A 16-digit hexadecimal number specifying the identifier extension portion of the SRP initiator
port identifier. This data is sent by the initiator to the target in the SRP_LOGIN_REQ request.

cmd_sg_entr
ies

A number in the range 1..255 that specifies the maximum number of data buffer descriptors
stored in the SRP_CMD information unit itself. With allow_ext_sg=0 the parameter
cmd_sg_entries defines the maxi- mum S/G list length for a single SRP_CMD, and commands
whose S/G list length exceeds this limit after S/G list collapsing will fail.

allow_ext_sg Whether ib_srp is allowed to include a partial memory descriptor list in an SRP_CMD instead of
the entire list. If a partial memory descriptor list has been included in an SRP_CMD the
remaining memory descriptors are communicated from initiator to target via an additional
RDMA transfer. Setting allow_ext_sg to 1 increases the maximum amount of data that can be
transferred between initiator and target via a single SCSI command. Since not all SRP target
implementations support partial memory descriptor lists the default value for this option is 0.

sg_tablesize A number in the range 1..2048 specifying the maximum S/G list length the SCSI layer is allowed
to pass to ib_srp. Specifying a value that exceeds cmd_sg_entries is only safe with partial
memory descriptor list support enabled (allow_ext_sg=1).

comp_vector A number in the range 0..n-1 specifying the MSI-X completion vector. Some HCA's allocate
multiple (n) MSI-X vectors per HCA port. If the IRQ affinity masks of these interrupts have been
configured such that each MSI-X interrupt is handled by a different CPU then the comp_vector
parameter can be used to spread the SRP completion workload over multiple CPU's.

tl_retry_coun
t

A number in the range 2..7 specifying the IB RC retry count.

184

•
•
•

1.
a.

b.

2.
a.

b.

SRP Tools - ibsrpdm, srp_daemon and srpd Service Script
The OFED distribution provides two utilities: ibsrpdm and srp_daemon:

They detect targets on the fabric reachable by the Initiator (Step 1)
Output target attributes in a format suitable for use in the above “echo” command (Step 2)
A service script srpd which may be started at stack startup

The utilities can be found under /usr/sbin/, and are part of the srptools RPM that may be installed
using the Mellanox OFED installation. Detailed information regarding the various options for these
utilities are provided by their man pages.
Below, several usage scenarios for these utilities are presented.

ibsrpdm

ibsrpdm has the following tasks:
Detecting reachable targets.

To detect all targets reachable by the SRP initiator via the default umad device (/sys/
class/infiniband_mad/umad0), execute the following command:

ibsrpdm

This command will result into readable output information on each SRP Target detected.
Sample:

 IO Unit Info:
 port LID: 0103
 port GID: fe800000000000000002c90200402bd5
 change ID: 0002
 max controllers: 0x10
 controller[1]
 GUID: 0002c90200402bd4
 vendor ID: 0002c9
 device ID: 005a44
 IO class : 0100
 ID: LSI Storage Systems SRP Driver 200400a0b81146a1
 service entries: 1
 service[0]: 200400a0b81146a1 / SRP.T10:200400A0B81146A1

To detect all the SRP Targets reachable by the SRP Initiator via another umad device, use
the following command:

ibsrpdm -d <umad device>

Assisting in SRP connection creation.
To generate an output suitable for utilization in the “echo” command in “Manually
Establishing an SRP Connection” section, add the ‘-c’ option to ibsrpdm:

ibsrpdm -c

Sample output:

id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id=200400a0b8
1146a1

To establish a connection with an SRP Target using the output from the ‘ibsrpdm -c’
example above, execute the following command:

185

3.

•

•

•

•
•

1.

2.

•

•

•

•

•

echo -n id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id=200400a0b8
1146a1 > /sys/
class/infiniband_srp/srp-mlx5_0-1/add_target

The SRP connection should now be up; the newly created SCSI devices should appear in
the listing obtained from the ‘fdisk -l’ command.

Discover reachable SRP Targets given an InfiniBand HCA name and port, rather than by just
running /sys/class/infiniband_mad/umad<N> where <N> is a digit.

srpd

The srpd service script allows automatic activation and termination of the srp_daemon utility on all
system live InfiniBand ports.

srp_daemon

srp_daemon utility is based on ibsrpdm and extends its functionality. In addition to the ibsrpdm
functionality described above, srp_daemon can:

Establish an SRP connection by itself (without the need to issue the “echo” command described
in “Manually Establishing an SRP Connection” section)
Continue running in background, detecting new targets and establishing SRP connections with
them (daemon mode)
Discover reachable SRP Targets given an infiniband HCA name and port, rather than just by /
dev/umad<N> where <N> is a digit
Enable High Availability operation (together with Device-Mapper Multipath)
Have a configuration file that determines the targets to connect to:

srp_daemon commands equivalent to ibsrpdm:

"srp_daemon -a -o" is equivalent to "ibsrpdm"
"srp_daemon -c -a -o" is equivalent to "ibsrpdm -c"

Note: These srp_daemon commands can behave differently than the equivalent ibsrpdm
command when /etc/srp_daemon.conf is not empty.
srp_daemon extensions to ibsrpdm.

To discover SRP Targets reachable from the HCA device <InfiniBand HCA name> and the
port <port num>, (and to generate output suitable for 'echo'), execute:

host1# srp_daemon -c -a -o -i <InfiniBand HCA name> -p <port number>

Note: To obtain the list of InfiniBand HCA device names, you can either use the ibstat tool
or run ‘ls /sys/class/infiniband’.
To both discover the SRP Targets and establish connections with them, just add the -e
option to the above command.
Executing srp_daemon over a port without the -a option will only display the reachable
targets via the port and to which the initiator is not connected. If executing with the -e
option it is better to omit -a.
It is recommended to use the -n option. This option adds the initiator_ext to the
connecting string (see "Multiple Connections from Initiator InfiniBand Port to the Target"
section).
srp_daemon has a configuration file that can be set, where the default is /etc/
srp_daemon.conf. Use the -f to supply a different configuration file that configures the
targets srp_daemon is allowed to connect to. The configuration file can also be used to
set values for additional parameters (e.g., max_cmd_per_lun, max_sect).

186

•

•

•

•

•
•

•
•

•
•
•

A continuous background (daemon) operation, providing an automatic ongoing detection
and connection capability. See "Automatic Discovery and Connection to Targets" section.

Automatic Discovery and Connection to Targets
Make sure the ib_srp module is loaded, the SRP Initiator can reach an SRP Target, and that an
SM is running.
To connect to all the existing Targets in the fabric, run “srp_daemon -e -o”. This utility will
scan the fabric once, connect to every Target it detects, and then exit.

To connect to all the existing Targets in the fabric and to connect to new targets that will join the
fabric, execute srp_daemon -e. This utility continues to execute until it is either killed by the
user or encounters connection errors (such as no SM in the fabric).
To execute SRP daemon as a daemon on all the ports:

srp_daemon.sh (found under /usr/sbin/). srp_daemon.sh sends its log to /var/log/
srp_daemon.log.
Start the srpd service script, run service srpd start

It is possible to configure this script to execute automatically when the InfiniBand driver starts
by changing the value of SRP_DAEMON_ENABLE in /etc/infiniband/ openib.conf to “yes”.
However, this option also enables SRP High Availability that has some more features – see “Hig
h Availability (HA)” section

For the changes in openib.conf to take effect, run:

/etc/init.d/openibd restart

Multiple Connections from Initiator InfiniBand Port to the Target
Some system configurations may need multiple SRP connections from the SRP Initiator to the same
SRP Target: to the same Target IB port, or to different IB ports on the same Target HCA.
In case of a single Target IB port, i.e., SRP connections use the same path, the configuration is enabled
using a different initiator_ext value for each SRP connection. The initiator_ext value is a 16-
hexadecimal-digit value specified in the connection command.
Also in case of two physical connections (i.e., network paths) from a single initiator IB port to two
different IB ports on the same Target HCA, there is need for a different initiator_ext value on each path.
The conventions is to use the Target port GUID as the initiator_ext value for the relevant path.
If you use srp_daemon with -n flag, it automatically assigns initiator_ext values according to this
convention. For example:

id_ext=200500A0B81146A1,ioc_guid=0002c90200402bec,\
dgid=fe800000000000000002c90200402bed,pkey=ffff,\
service_id=200500a0b81146a1,initiator_ext=ed2b400002c90200

Notes:
It is recommended to use the -n flag for all srp_daemon invocations.
ibsrpdm does not have a corresponding option.
srp_daemon.sh always uses the -n option (whether invoked manually by the user, or
automatically at startup by setting SRP_DAEMON_ENABLE to yes).

srp_daemon will follow the configuration it finds in /etc/srp_daemon.conf. Thus, it will
ignore a target that is disallowed in the configuration file.

187

1.
2.
3.
4.

•

•

•

High Availability (HA)
High Availability works using the Device-Mapper (DM) multipath and the SRP daemon. Each initiator is
connected to the same target from several ports/HCAs. The DM multipath is responsible for joining
together different paths to the same target and for failover between paths when one of them goes
offline. Multipath will be executed on newly joined SCSI devices.
Each initiator should execute several instances of the SRP daemon, one for each port. At startup, each
SRP daemon detects the SRP Targets in the fabric and sends requests to the ib_srp module to connect
to each of them. These SRP daemons also detect targets that subsequently join the fabric, and send
the ib_srp module requests to connect to them as well.

Operation

When a path (from port1) to a target fails, the ib_srp module starts an error recovery process. If this
process gets to the reset_host stage and there is no path to the target from this port, ib_srp will
remove this scsi_host. After the scsi_host is removed, multipath switches to another path to this target
(from another port/HCA).
When the failed path recovers, it will be detected by the SRP daemon. The SRP daemon will then
request ib_srp to connect to this target. Once the connection is up, there will be a new scsi_host for
this target. Multipath will be executed on the devices of this host, returning to the original state (prior
to the failed path).

Manual Activation of High Availability

Initialization - execute after each boot of the driver:
Execute modprobe dm-multipath
Execute modprobe ib-srp
Make sure you have created file /etc/udev/rules.d/91-srp.rules as described above
Execute for each port and each HCA:

srp_daemon -c -e -R 300 -i <InfiniBand HCA name> -p <port number>

This step can be performed by executing srp_daemon.sh, which sends its log to /var/log/
srp_daemon.log.

Now it is possible to access the SRP LUNs on /dev/mapper/.

Automatic Activation of High Availability

Set the value of SRP_DAEMON_ENABLE in /etc/infiniband/openib.conf to "yes".
For the changes in openib.conf to take effect, run: /etc/init.d/openibd restart
Start srpd service, run:

service srpd start

From the next loading of the driver it will be possible to access the SRP LUNs on /dev/mapper/

It is possible for regular (non-SRP) LUNs to also be present; the SRP LUNs may be identified
by their names. You can configure the /etc/multipath.conf file to change multipath behavior.

It is also possible that the SRP LUNs will not appear under /dev/mapper/. This can occur if the
SRP LUNs are in the black-list of multipath. Edit the ‘blacklist’ section in /etc/multipath.conf
and make sure the SRP LUNs are not blacklisted.

188

•

1.

2.

a.
b.
c.

d.
3.

It is possible to see the output of the SRP daemon in /var/log/srp_daemon.log

Shutting Down SRP
SRP can be shutdown by using “rmmod ib_srp”, or by stopping the OFED driver (“/etc/init.d/openibd
stop”), or as a by-product of a complete system shutdown.
Prior to shutting down SRP, remove all references to it. The actions you need to take depend on the
way SRP was loaded. There are three cases:

Without High Availability
When working without High Availability, you should unmount the SRP partitions that were
mounted prior to shutting down SRP.
After Manual Activation of High Availability
If you manually activated SRP High Availability, perform the following steps:

Unmount all SRP partitions that were mounted.
Stop service srpd (Kill the SRP daemon instances).
Make sure there are no multipath instances running. If there are multiple instances, wait
for them to end or kill them.
Run: multipath -F

After Automatic Activation of High Availability
If SRP High Availability was automatically activated, SRP shutdown must be part of the driver
shutdown ("/etc/init.d/openibd stop") which performs Steps 2-4 of case b above. However, you
still have to unmount all SRP partitions that were mounted before driver shutdown.

iSCSI Extensions for RDMA (iSER)
iSCSI Extensions for RDMA (iSER) extends the iSCSI protocol to RDMA. It permits data to be
transferred directly into and out of SCSI buffers without intermediate data copies.
iSER uses the RDMA protocol suite to supply higher bandwidth for block storage transfers (zero time
copy behavior). To that fact, it eliminates the TCP/IP processing overhead while preserving the
compatibility with iSCSI protocol.

It is possible that regular (not SRP) LUNs are also present. SRP LUNs may be identified
by their name.

189

•
•
•

There are three target implementation of ISER:
Linux SCSI target framework (tgt)
Linux-IO target (LIO)
Generic SCSI target subsystem for Linux (SCST)

Each one of those targets can work in TCP or iSER transport modes.
iSER also supports RoCE without any additional configuration required. To bond the RoCE interfaces,
set the fail_over_mac option in the bonding driver (see "Bonding IPoIB").
RDMA/RoCE is located below the iSER block on the network stack. In order to run iSER, the RDMA
layer should be configured and validated (over Ethernet or InfiniBand). For troubleshooting RDMA,
please refer to "HowTo Enable, Verify and Troubleshoot RDMA" on Mellanox Community.

iSER Initiator
The iSER initiator is controlled through the iSCSI interface available from the iscsi-initiator-utils
package.
To discover and log into iSCSI targets, as well as access and manage the open-iscsi database use the i
scasiadm utility, a command-line tool.
To enable iSER as a transport protocol use "I iser" as a parameter of the iscasiadm command.
Example for discovering and connecting targets over iSER:

iscsiadm -m discovery -o new -o old -t st -I iser -p <ip:port> -l

 Note that the target implementation (e.g. LIO, SCST, TGT) does not affect he initiator process and
configuration.

iSER Targets

https://community.mellanox.com/docs/DOC-2086

190

Targets settings such as timeouts and retries are set the same as any other iSCSI targets.

For various configuration, troubleshooting and debugging examples, refer to Storage Solutions on
Mellanox Community.

Lustre
Lustre is an open-source, parallel distributed file system, generally used for large-scale cluster
computing that supports many requirements of leadership class HPC simulation environments.
Lustre Compilation for MLNX_OFED:

To compile Lustre version 2.4.0 and higher:

$./configure --with-o2ib=/usr/src/ofa_kernel/default/
$ make rpms

To compile older Lustre versions:

$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include /usr/src/
ofa_kernel/default/include/linux/compat-2.6.h" ./configure --with-o2ib=/usr/src/
ofa_kernel/default/
$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include /usr/src/
ofa_kernel/default/include/linux/compat-2.6.h" make rpms

For full installation example, refer to “HowTo Install Mellanox OFED driver for Lustre” Community
post.

NVME-oF - NVM Express over Fabrics

NVME-oF
NVME-oF enables NVMe message-based commands to transfer data between a host computer and a
target solid-state storage device or system over a network such as Ethernet, Fibre Channel, and
InfiniBand. Tunneling NVMe commands through an RDMA fabric provides a high throughput and a low
latency.
For information on how to configure NVME-oF, please refer to the HowTo Configure NVMe over Fabrics
Community post.

Setting the iSER target is out of scope of this manual. For guidelines of how to do so, please
refer to the relevant target documentation (e.g. stgt, targetcli).

If targets are set to auto connect on boot, and targets are unreachable, it may take a long time
to continue the boot process if timeouts and max retries are set too high.

This procedure applies to RHEL/SLES OSs supported by Lustre. For further information,
please refer to Lustre Release Notes.

https://community.mellanox.com/docs/DOC-2283
https://community.mellanox.com/docs/DOC-2283
https://community.mellanox.com/docs/DOC-2283
https://community.mellanox.com/s/article/howto-install-mellanox-ofed-driver-for-lustre
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics

191

•

•

•
•
•
•
•

•
•
•
•

NVME-oF Target Offload

NVME-oF Target Offload is an implementation of the new NVME-oF standard Target (server) side in
hardware. Starting from ConnectX-5 family cards, all regular IO requests can be processed by the HCA,
with the HCA sending IO requests directly to a real NVMe PCI device, using peer-to-peer PCI
communications. This means that excluding connection management and error flows, no CPU
utilization will be observed during NVME-oF traffic.

For instructions on how to configure NVME-oF target offload, refer to HowTo Configure NVME-
oF Target Offload Community post.
For instructions on how to verify that NVME-oF target offload is working properly, refer to
Simple NVMe-oF Target Offload Benchmark Community post.

Virtualization
The chapter contains the following sections:

Single Root IO Virtualization (SR-IOV)
Enabling Paravirtualization
VXLAN Hardware Stateless Offloads
Q-in-Q Encapsulation per VF in Linux (VST)
802.1Q Double-Tagging

Single Root IO Virtualization (SR-IOV)
Single Root IO Virtualization (SR-IOV) is a technology that allows a physical PCIe device to present itself
multiple times through the PCIe bus. This technology enables multiple virtual instances of the device
with separate resources. Mellanox adapters are capable of exposing up to 127 virtual instances (Virtual
Functions (VFs)) for each port in the Mellanox ConnectX® family cards. These virtual functions can
then be provisioned separately. Each VF can be seen as an additional device connected to the Physical
Function. It shares the same resources with the Physical Function, and its number of ports equals
those of the Physical Function.
SR-IOV is commonly used in conjunction with an SR-IOV enabled hypervisor to provide virtual machines
direct hardware access to network resources hence increasing its performance.
In this chapter we will demonstrate setup and configuration of SR-IOV in a Red Hat Linux environment
using Mellanox ConnectX® VPI adapter cards family.

System Requirements
To set up an SR-IOV environment, the following is required:

MLNX_OFED Driver
A server/blade with an SR-IOV-capable motherboard BIOS
Hypervisor that supports SR-IOV such as: Red Hat Enterprise Linux Server Version 6
Mellanox ConnectX® VPI Adapter Card family with SR-IOV capability

This feature is only supported for ConnectX-5 adapter cards family and above.

https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://community.mellanox.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://community.mellanox.com/s/article/simple-nvme-of-target-offload-benchmark

192

1.

2.

3.
4.

Setting Up SR-IOV
Depending on your system, perform the steps below to set up your BIOS. The figures used in this
section are for illustration purposes only. For further information, please refer to the appropriate BIOS
User Manual:

Enable "SR-IOV" in the system BIOS.

Enable "Intel Virtualization Technology".

Install a hypervisor that supports SR-IOV.
Depending on your system, update the /boot/grub/grub.conf file to include a similar command
line load parameter for the Linux kernel.
For example, to Intel systems, add:

193

1.
2.

3.
4.

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (4.x.x)
 root (hd0,0)
 kernel /vmlinuz-4.x.x ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 intel_iommu=on initrd /initrd-4.x.x.img

Note: Please make sure the parameter "intel_iommu=on" exists when updating the /boot/grub/
grub.conf file, otherwise SR-IOV cannot be loaded.
Some OSs use /boot/grub2/grub.cfg file. If your server uses such file, please edit this file instead
(add “intel_iommu=on” for the relevant menu entry at the end of the line that starts with
"linux16").

Configuring SR-IOV (Ethernet)
To set SR-IOV in Ethernet mode, refer to HowTo Configure SR-IOV for ConnectX-4/ConnectX- 5/
ConnectX-6 with KVM (Ethernet) Community Post.

Configuring SR-IOV (InfiniBand)
Install the MLNX_OFED driver for Linux that supports SR-IOV.
Check if SR-IOV is enabled in the firmware.

mlxconfig -d /dev/mst/mt4115_pciconf0 q

 Device #1:

 Device type: Connect4
 PCI device: /dev/mst/mt4115_pciconf0
 Configurations: Current
 SRIOV_EN 1
 NUM_OF_VFS 8

Reboot the server.
Write to the sysfs file the number of Virtual Functions you need to create for the PF. You can use
one of the following equivalent files:
You can use one of the following equivalent files:
- A standard Linux kernel generated file that is available in the new kernels.

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs

Note: This file will be generated only if IOMMU is set in the grub.conf file (by adding
intel_iommu=on, as seen in the fourth step under “Setting Up SR-IOV”).
- A file generated by the mlx5_core driver with the same functionality as the kernel generated
one.

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/mlx5_num_vfs

Note: This file is used by old kernels that do not support the standard file. In such kernels, using
sriov_numvfs results in the following error: “bash: echo: write error: Function not

If needed, use mlxconfig to set the relevant fields:
mlxconfig -d /dev/mst/mt4115_pciconf0 set SRIOV_EN=1 NUM_OF_VFS=16

https://community.mellanox.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet
https://community.mellanox.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet

194

5.

6.

implemented”.
The following rules apply when writing to these files:
- If there are no VFs assigned, the number of VFs can be changed to any valid value (0 - max
#VFs as set during FW burning)
- If there are VFs assigned to a VM, it is not possible to change the number of VFs
- If the administrator unloads the driver on the PF while there are no VFs assigned, the driver
will unload and SRI-OV will be disabled
- If there are VFs assigned while the driver of the PF is unloaded, SR-IOV will not be disabled.
This means that VFs will be visible on the VM. However, they will not be operational. This is
applicable to OSs with kernels that use pci_stub and not vfio.
 - The VF driver will discover this situation and will close its resources
 - When the driver on the PF is reloaded, the VF becomes operational. The administrator of the
VF will need to restart the driver in order to resume working with the VF.
Load the driver. To verify that the VFs were created. Run:

lspci | grep Mellanox
08:00.0 Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4]
08:00.1 Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4]
08:00.2 Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4 Virtual Function]
08:00.3 Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4 Virtual Function]
08:00.4 Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4 Virtual Function]
08:00.5 Infiniband controller: Mellanox Technologies MT27700 Family
[ConnectX-4 Virtual Function]

Configure the VFs.
After VFs are created, 3 sysfs entries per VF are available under /sys/class/infiniband/mlx5_<PF
INDEX>/device/sriov (shown below for VFs 0 to 2):

+-- 0
| +-- node
| +-- policy
| +-- port
+-- 1
| +-- node
| +-- policy
| +-- port
+-- 2
 +-- node
 +-- policy
 +-- port

For each Virtual Function, the following files are available:
- Node - Node’s GUID:
The user can set the node GUID by writing to the /sys/class/infiniband/<PF>/device/sriov/
<index>/node file. The example below, shows how to set the node GUID for VF 0 of mlx5_0.

echo 00:11:22:33:44:55:1:0 > /sys/class/infiniband/mlx5_0/device/sriov/0/
node

- Port - Port’s GUID:
The user can set the port GUID by writing to the /sys/class/infiniband/<PF>/device/sriov/<index>/
port file. The example below, shows how to set the port GUID for VF 0 of mlx5_0.

echo 00:11:22:33:44:55:2:0 > /sys/class/infiniband/mlx5_0/device/sriov/0/
port

195

7.

1.

2.

3.

- Policy - The vport's policy. The user can set the port GUID by writing to the /sys/class/
infiniband/<PF>/device/sriov/<index>/port file. The policy can be one of:
 - Down - the VPort PortState remains 'Down'
 - Up - if the current VPort PortState is 'Down', it is modified to 'Initialize'. In all other states, it
is unmodified. The result is that the SM may bring the VPort up.
 - Follow - follows the PortState of the physical port. If the PortState of the physical port is
'Active', then the VPort implements the 'Up' policy. Otherwise, the VPort PortState is 'Down'.
Notes:
- The policy of all the vports is initialized to “Down” after the PF driver is restarted except for
VPort0 for which the policy is modified to 'Follow' by the PF driver.
- To see the VFs configuration, you must unbind and bind them or reboot the VMs if the VFs were
assigned.
Make sure that OpenSM supports Virtualization (Virtualization must be enabled).
The /etc/opensm/opensm.conf file should contain the following line:

virt_enabled 2

Note: OpenSM and any other utility that uses SMP MADs (ibnetdiscover, sminfo, iblink- info,
smpdump, ibqueryerr, ibdiagnet and smpquery) should run on the PF and not on the VFs. In
case of multi PFs (multi-host), OpenSM should run on Host0.

VFs Initialization Note
Since the same mlx5_core driver supports both Physical and Virtual Functions, once the Virtual
Functions are created, the driver of the PF will attempt to initialize them so they will be available to the
OS owning the PF. If you want to assign a Virtual Function to a VM, you need to make sure the VF is not
used by the PF driver. If a VF is used, you should first unbind it before assigning to a VM.

To unbind a device use the following command:
Get the full PCI address of the device.

lspci -D

Example:

0000:09:00.2

Unbind the device.

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind

Bind the unbound VF.

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

PCI BDF Mapping of PFs and VFs
PCI addresses are sequential for both of the PF and their VFs. Assuming the card's PCI slot is 05:00
and it has 2 ports, the PFs PCI address will be 05:00.0 and 05:00.1.
Given 3 VFs per PF, the VFs PCI addresses will be:

05:00.2-4 for VFs 0-2 of PF 0 (mlx5_0)
05:00.5-7 for VFs 0-2 of PF 1 (mlx5_1)

196

1.
2.
3.

4.
5.
6.

7.

Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine
This section describes a mechanism for adding a SR-IOV VF to a Virtual Machine.

Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server
Run the virt-manager.
Double click on the virtual machine and open its Properties.
Go to Details → Add hardware → PCI host device.

Choose a Mellanox virtual function according to its PCI device (e.g., 00:03.1)
If the Virtual Machine is up reboot it, otherwise start it.
Log into the virtual machine and verify that it recognizes the Mellanox card. Run:

lspci | grep Mellanox

Example:

lspci | grep Mellanox
01:00.0 Infiniband controller: Mellanox Technologies MT28800 Family
[ConnectX-5 Ex]

Add the device to the /etc/sysconfig/network-scripts/ifcfg-ethX configuration file. The
MAC address for every virtual function is configured randomly, therefore it is not necessary to
add it.

197

•
•
•

•

•

•

Ethernet Virtual Function Configuration when Running SR-IOV
SR-IOV Virtual function configuration can be done through Hypervisor iprout2/netlink tool, if present.
Otherwise, it can be done via sysfs.

ip link set { dev DEVICE | group DEVGROUP } [{ up | down }]
...
[vf NUM [mac LLADDR] [vlan VLANID [qos VLAN-QOS]]
...
[spoofchk { on | off}]]
...

sysfs configuration (ConnectX-4):

/sys/class/net/enp8s0f0/device/sriov/[VF]

+-- [VF]
| +-- config
| +-- link_state
| +-- mac
| +-- mac_list
| +-- max_tx_rate
| +-- min_tx_rate
| +-- spoofcheck
| +-- stats
| +-- trunk
| +-- trust
| +-- vlan

VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)

When running ETH ports on VGT, the ports may be configured to simply pass through packets as is
from VFs (VLAN Guest Tagging), or the administrator may configure the Hypervisor to silently force
packets to be associated with a VLAN/Qos (VLAN Switch Tagging).
In the latter case, untagged or priority-tagged outgoing packets from the guest will have the VLAN tag
inserted, and incoming packets will have the VLAN tag removed.
The default behavior is VGT.
To configure VF VST mode, run:

ip link set dev <PF device> vf <NUM> vlan <vlan_id> [qos <qos>]

where:
NUM = 0..max-vf-num
vlan_id = 0..4095
qos = 0..7

For example:
ip link set dev eth2 vf 2 vlan 10 qos 3 - sets VST mode for VF #2 belonging to PF eth2, with
vlan_id = 10 and qos = 3
ip link set dev eth2 vf 2 vlan 0 - sets mode for VF 2 back to VGT

Additional Ethernet VF Configuration Options

Guest MAC configuration - by default, guest MAC addresses are configured to be all zeroes. If
the administrator wishes the guest to always start up with the same MAC, he/she should
configure guest MACs before the guest driver comes up. The guest MAC may be configured by
using:

198

•

•

ip link set dev <PF device> vf <NUM> mac <LLADDR>

For legacy and ConnectX-4 guests, which do not generate random MACs, the administrator
should always configure their MAC addresses via IP link, as above.

Spoof checking - Spoof checking is currently available only on upstream kernels newer than
3.1.

ip link set dev <PF device> vf <NUM> spoofchk [on | off]

 Guest Link State

ip link set dev <PF device> vf <UM> state [enable| disable| auto]

Virtual Function Statistics

Virtual function statistics can be queried via sysfs:

cat /sys/class/infiniband/mlx5_2/device/sriov/2/stats tx_packets : 5011
tx_bytes : 4450870
tx_dropped : 0
rx_packets : 5003
rx_bytes : 4450222
rx_broadcast : 0
rx_multicast : 0
tx_broadcast : 0
tx_multicast : 8
rx_dropped : 0

Mapping VFs to Ports

To view the VFs mapping to ports:
Use the ip link tool v2.6.34~3 and above.

ip link

Output:

61: p1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
group default qlen 1000
 link/ether 00:02:c9:f1:72:e0 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
 vf 37 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
 vf 38 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state
disable
 vf 39 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state
disable

When a MAC is ff:ff:ff:ff:ff:ff, the VF is not assigned to the port of the net device it is listed under. In the
example above, vf38 is not assigned to the same port as p1p1, in contrast to vf0.
However, even VFs that are not assigned to the net device, could be used to set and change its settings.
For example, the following is a valid command to change the spoof check:

ip link set dev p1p1 vf 38 spoofchk on

199

•

•

This command will affect only the vf38. The changes can be seen in ip link on the net device that this
device is assigned to.

Mapping VFs to Ports using the mlnx_get_vfs.pl tool

To map the PCI representation in BDF to the respective ports, run:

mlnx_get_vfs.pl

Output:

BDF 0000:04:00.0
 Port 1: 2
 vf0 0000:04:00.1
 vf1 0000:04:00.2
 Port 2: 2
 vf2 0000:04:00.3
 vf3 0000:04:00.4
 Both: 1
 vf4 0000:04:00.5

RoCE Support

RoCE is supported on Virtual Functions and VLANs may be used with it. For RoCE, the hypervisor GID
table size is of 16 entries while the VFs share the remaining 112 entries. When the number of VFs is
larger than 56 entries, some of them will have GID table with only a single entry which is inadequate if
VF's Ethernet device is assigned with an IP address.

Virtual Guest Tagging (VGT+)
VGT+ is an advanced mode of Virtual Guest Tagging (VGT), in which a VF is allowed to tag its own
packets as in VGT, but is still subject to an administrative VLAN trunk policy. The policy determines
which VLAN IDs are allowed to be transmitted or received. The policy does not determine the user
priority, which is left unchanged.
Packets can be sent in one of the following modes: when the VF is allowed to send/receive untagged
and priority tagged traffic and when it is not. No default VLAN is defined for VGT+ port. The send
packets are passed to the eSwitch only if they match the set, and the received packets are forwarded to
the VF only if they match the set.

Configuration

To enable VGT+ mode:
Set the corresponding port/VF (in the example below port eth5, VF0) range of allowed VLANs.

echo "<add> <start_vid> <end_vid>" > /sys/class/net/eth5/device/sriov/0/trunk

Examples:
Adding VLAN ID range (4-15) to trunk:

echo add 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

Adding a single VLAN ID to trunk:

When working in SR-IOV, the default operating mode is VGT.

200

•

•

1.
a.

b.

2.

a.

echo add 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Note: When VLAN ID = 0, it indicates that untagged and priority-tagged traffics are allowed

To disable VGT+ mode, make sure to remove all VLANs.

echo rem 0 4095 > /sys/class/net/eth5/device/sriov/0/trunk

To remove selected VLANs.
Remove VLAN ID range (4-15) from trunk:

echo rem 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

Remove a single VLAN ID from trunk:

echo rem 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

SR-IOV Advanced Security Features

SR-IOV MAC Anti-Spoofing

Normally, MAC addresses are unique identifiers assigned to network interfaces, and they are fixed
addresses that cannot be changed. MAC address spoofing is a technique for altering the MAC address
to serve different purposes. Some of the cases in which a MAC address is altered can be legal, while
others can be illegal and abuse security mechanisms or disguises a possible attacker.
The SR-IOV MAC address anti-spoofing feature, also known as MAC Spoof Check provides protection
against malicious VM MAC address forging. If the network administrator assigns a MAC address to a
VF (through the hypervisor) and enables spoof check on it, this will limit the end user to send traffic
only from the assigned MAC address of that VF.
MAC Anti-Spoofing Configuration

In the configuration example below, the VM is located on VF-0 and has the following MAC address:
11:22:33:44:55:66.
There are two ways to enable or disable MAC anti-spoofing:

Use the standard IP link commands - available from Kernel 3.10 and above.
To enable MAC anti-spoofing, run:

ip link set ens785f1 vf 0 spoofchk on

To disable MAC anti-spoofing, run:

ip link set ens785f1 vf 0 spoofchk off

Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ETH_IF_NAME> / device/
sriov/<VF index>/spoofchk.

To enable MAC anti-spoofing, run:

MAC anti-spoofing is disabled by default.

201

b.

1.

2.

3.

4.
5.

6.

echo "ON" > /sys/class/net/ens785f1/vf/0/spoofchk

To disable MAC anti-spoofing, run:

echo "OFF" > /sys/class/net/ens785f1/vf/0/spoofchk

Limit and Bandwidth Share Per VF

This feature enables rate limiting traffic per VF in SR-IOV mode. For details on how to configure rate
limit per VF for ConnectX-4 and above adapter cards, please refer to HowTo Configure Rate Limit per
VF for ConnectX-4/ConnectX-5/ConnectX-6 Community post.

Limit Bandwidth per Group of VFs

VFs Rate Limit for vSwitch (OVS) feature allows users to join available VFs into groups and set a rate
limitation on each group. Rate limitation on a VF group ensures that the total Tx bandwidth that the VFs
in this group get (altogether combined) will not exceed the given value.
With this feature, a VF can still be configured with an individual rate limit as in the past (under /sys/
class/net/<ifname>/device/sriov/<vf_num>/max_tx_rate). However, the actual bandwidth limit on the VF
will eventually be determined considering the VF group limitation and how many VFs are in the same
group.
For example: 2 VFs (0 and 1) are attached to group 3.
Case 1: The rate limitation on the group is set to 20G. Rate limit of each VF is 15G
Result: Each VF will have a rate limit of 10G
Case 2: Group’s max rate limitation is still set to 20G. VF 0 is configured to 30G limit, while VF 1 is
configured to 5G rate limit
Result: VF 0 will have 15G de-facto. VF 1 will have 5G
The rule of thumb is that the group’s bandwidth is distributed evenly between the number of VFs in the
group. If there are leftovers, they will be assigned to VFs whose individual rate limit has not been met
yet.
VFs Rate Limit Feature Configuration

When VF rate group is supported by FW, the driver will create a new hierarchy in the SRI-OV
sysfs named “groups” (/sys/class/net/<ifname>/device/sriov/groups/). It will contain all the info
and the configurations allowed for VF groups.
All VFs are placed in group 0 by default since it is the only existing group following the initial
driver start. It would be the only group available under /sys/class/net/<ifname>/device/sriov/
groups/
The VF can be moved to a different group by writing to the group file -> echo $GROUP_ID > /sys/
class/net/<ifname>/device/sriov/<vf_id>/group
The group IDs allowed are 0-255
Only when there is at least 1 VF in a group, there will be a group configuration available under /
sys/class/net/<ifname>/device/sriov/groups/ (Except for group 0, which is always available even
when it’s empty).
Once the group is created (by moving at least 1 VF to that group), users can configure the
group’s rate limit. For example:

This configuration is non-persistent and does not survive driver restart.

This feature is at beta level.

https://community.mellanox.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6
https://community.mellanox.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6

202

a.

b.
c.

d.

e.
f.

•

•

•

•

•

echo 10000 > /sys/class/net/<ifname>/device/sriov/5/max_tx_rate – setting individual rate
limitation of VF 5 to 10G (Optional)
echo 7 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group 7
echo 5000 > /sys/class/net/<ifname>/device/sriov/groups/7/max_tx_rate – setting group 7
with rate limitation of 5G
When running traffic via VF 5 now, it will be limited to 5G because of the group rate limit
even though the VF itself is limited to 10G
echo 3 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group 3
Group 7 will now disappear from /sys/class/net/<ifname>/device/sriov/groups since there
are 0 VFs in it. Group 3 will now appear. Since there’s no rate limit on group 3, VF 5 can
transmit at 10G (thanks to its individual configuration)

Notes:
You can see to which group the VF belongs to in the ‘stats’ sysfs (cat /sys/class/net/<ifname>/
device/sriov/<vf_num>/stats)
You can see the current rate limit and number of attached VFs to a group in the group’s ‘config’
sysfs (cat /sys/class/net/<ifname>/device/sriov/groups/<group_id>/config)

Bandwidth Guarantee per Group of VFs

Bandwidth guarantee (minimum BW) can be set on a group of VFs to ensure this group is able to
transmit at least the amount of bandwidth specified on the wire.
Note the following:

The minimum BW settings on VF groups determine how the groups share the total BW between
themselves. It does not impact an individual VF’s rate settings.
The total minimum BW that is set on the VF groups should not exceed the total line rate.
Otherwise, results are unexpected.
It is still possible to set minimum BW on the individual VFs inside the group. This will determine
how the VFs share the group’s minimum BW between themselves. The total minimum BW of the
VF member should not exceed the minimum BW of the group.

For instruction on how to create groups of VFs, see Limit Bandwidth per Group of VFs above.
Example
With a 40Gb link speed, assuming 4 groups and default group 0 have been created:

echo 20000 > /sys/class/net/<ifname>/device/sriov/group/1/min_tx_rate
echo 5000 > /sys/class/net/<ifname>/device/sriov/group/2/min_tx_rate
echo 15000 > /sys/class/net/<ifname>/device/sriov/group/3/min_tx_rate

Group 0(default) : 0 - No BW guarantee is configured.
Group 1 : 20000 - This is the maximum min rate among groups
Group 2 : 5000 which is 25% of the maximum min rate
Group 3 : 15000 which is 75% of the maximum min rate
Group 4 : 0 - No BW guarantee is configured.

Assuming there are VFs attempting to transmit in full line rate in all groups, the results would look
like: In which case, the minimum BW allocation would be:

Group0 – Will have no BW to use since no BW guarantee was set on it while other
groups do have such settings.
Group1 – Will transmit at 20Gb/s
Group2 – Will transmit at 5Gb/s
Group3 – Will transmit at 15Gb/s
Group4 - Will have no BW to use since no BW guarantee was set on it while other
groups do have such settings.

203

1.
a.

b.

2.

a.

b.

1.

2.

Privileged VFs

In case a malicious driver is running over one of the VFs, and in case that VF's permissions are not
restricted, this may open security holes. However, VFs can be marked as trusted and can thus receive
an exclusive subset of physical function privileges or permissions. For example, in case of allowing all
VFs, rather than specific VFs, to enter a promiscuous mode as a privilege, this will enable malicious
users to sniff and monitor the entire physical port for incoming traffic, including traffic targeting other
VFs, which is considered a severe security hole.
Privileged VFs Configuration
In the configuration example below, the VM is located on VF-0 and has the following MAC address:
11:22:33:44:55:66.
There are two ways to enable or disable trust:

Use the standard IP link commands - available from Kernel 4.5 and above.
To enable trust for a specific VF, run:

ip link set ens785f1 vf 0 trust on

To disable trust for a specific VF, run:

ip link set ens785f1 vf 0 trust off

Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ETH_IF_NAME> / device/
sriov/<VF index>/trust.

To enable trust for a specific VF, run:

echo "ON" > /sys/class/net/ens785f1/device/sriov/0/trust

To disable trust for a specific VF, run:

echo "OFF" > /sys/class/net/ens785f1/device/sriov/0/trust

Probed VFs

Probing Virtual Functions (VFs) after SR-IOV is enabled might consume the adapter cards' resources.
Therefore, it is recommended not to enable probing of VFs when no monitoring of the VM is needed.
VF probing can be disabled in two ways, depending on the kernel version installed on your server:

If the kernel version installed is v4.12 or above, it is recommended to use the PCI sysfs interface
sriov_drivers_autoprobe. For more information, see linux-next branch.
If the kernel version installed is older than v4.12, it is recommended to use the mlx5_core
module parameter probe_vf with MLNX_OFED v4.1 or above.

Example:

echo 0 > /sys/module/mlx5_core/parameters/probe_vf

For more information on how to probe VFs, see HowTo Configure and Probe VFs on mlx5 Drivers
Community post.

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers
https://community.mellanox.com/docs/DOC-2849
https://community.mellanox.com/docs/DOC-2849

204

1.

2.

VF Promiscuous Rx Modes

VF Promiscuous Mode

VFs can enter a promiscuous mode that enables receiving the unmatched traffic and all the multicast
traffic that reaches the physical port in addition to the traffic originally targeted to the VF. The
unmatched traffic is any traffic's DMAC that does not match any of the VFs' or PFs' MAC addresses.
Note: Only privileged/trusted VFs can enter the VF promiscuous mode.

To set the promiscuous mode on for a VF, run:

ifconfig eth2 promisc

To exit the promiscuous mode, run:

ifconfig eth2 –promisc

VF All-Multi Mode

VFs can enter an all-multi mode that enables receiving all the multicast traffic sent from/to the other
functions on the same physical port in addition to the traffic originally targeted to the VF.
Note: Only privileged/trusted VFs can enter the all-multi RX mode.

To set the all-multi mode on for a VF, run:

ifconfig eth2 allmulti

To exit the all-multi mode, run:

#ifconfig eth2 –allmulti

Uninstalling the SR-IOV Driver

To uninstall SR-IOV driver, perform the following:
For Hypervisors, detach all the Virtual Functions (VF) from all the Virtual Machines (VM) or stop
the Virtual Machines that use the Virtual Functions.
Please be aware that stopping the driver when there are VMs that use the VFs, will cause
machine to hang.
Run the script below. Please be aware, uninstalling the driver deletes the entire driver's file,
but does not unload the driver.

205

3.

•
•
•
•

•

[root@swl022 ~]# /usr/sbin/ofed_uninstall.sh
This program will uninstall all OFED packages on your machine.
Do you want to continue?[y/N]:y
Running /usr/sbin/vendor_pre_uninstall.sh
Removing OFED Software installations
Running /bin/rpm -e --allmatches kernel-ib kernel-ib-devel libibverbs
libibverbs-devel libibverbs-devel-static libibverbs-utils libmlx4 libmlx4-
devel libibcm libibcm-devel libibumad libibumad-devel libibumad-static
 libibmad libibmad-devel libibmad-static librdmacm librdmacm-utils
librdmacm-devel ibacm opensm-libs opensm-devel perftest compat-dapl compat-
dapl-devel dapl dapl-devel dapl-devel-static dapl-utils srptools
infiniband-diags-guest ofed-scripts opensm-devel
warning: /etc/infiniband/openib.conf saved as /etc/infiniband/
openib.conf.rpmsave
Running /tmp/2818-ofed_vendor_post_uninstall.sh

Restart the server.

SR-IOV Live Migration

Overview
This section describes how to set up and perform live migration on VMs with SR-IOV and with actively
running traffic.
The below are the requirements for working with SR-IOV Live Migration.

VM network persistency for applications - VM’s applications must survive the migration process
No internal VM admin configuration
Support for Mellanox ASAP2 solution (kernel OVS hardware offload)
No use of physical function (PF) network device in Paravirtual (PV) path for failover network
traffic
Use of sub-function (SF) in HyperVisor as failover PV path

Support for this feature is at beta level.

206

•
•

•
•
•

1.
2.
3.
4.
5.

1.

2.

3.

4.

Prerequisites
ConnectX-5 or higher adapter cards
Hypervisor host with RedHat/CentOS minimal version of 8.0 with MLNX_OFED minimal version
of 5.1
VMs that run on CentOS v8.0 or higher
Hypervisor host with latest libvirt from https://github.com/libvirt/libvirt.git
Hypervisor host with atest qemu from https://github.com/qemu/qemu.git

This section consists of the following steps.
Host Servers Configuration.
VM OS Installation Using "virt-manager".
VFs to VMs Deployment.
Mellanox ASAP2 with OVS Deployment.
Live Migration with Paravirtual Path and Traffic.

Host Servers Configuration
The following steps should be performed in both host servers.

Install RedHat/CentOS v8.0 on the host server.
The CentOS 8.0 ISO image can be downloaded via this link.
Connect the host servers to the Ethernet switch.
Two host servers HV1 (eth0: 10.20.1.118) and HV2 (eth0: 10.20.1.119) connected via an Ethernet
switch with switch ports configured/enabled VLAN. For example, vlan=100
Install the latest MLNX_OFED version.
Download and install Mellanox MLNX_OFED driver for distribution RHEL/CentOS 8.0.

mount -o loop MLNX_OFED_LINIx-4.7-3.2.0-rhel8.0-x86_64.iso /mnt
cd /mnt
./mlnxofedinstall
reboot

Configure the host server and Mellanox NIC with SR-IOV as instructed here.

https://github.com/libvirt/libvirt.git
https://github.com/qemu/qemu.git
http://isoredirect.centos.org/centos/8/isos/x86_64/CentOS-8-x86_64-1905-dvd1.iso
https://community.mellanox.com/docs/DOC-2386

207

5.

6.

7.

8.

1.

Configure the host server and Mellanox NIC with sub-function by enabling it on BAR2.

mlxconfig -d /dev/mst/mt4119_pciconf0 set PF_BAR2_ENABLE=1
mlxconfig -d /dev/mst/mt4119_pciconf0 set PF_BAR2_SIZE=<0,1,2,3>

NOTES on PF_BAR2_SIZE:

 0: 8 SFs support
 1: 16 SFs support
 2: 32 SFs support
Set the number of SFs same as that of VFs, as one SF-VF pair is used to
attach to one VM.

Configure storage for VMs' images as shared.
The default location for VMs' images is /var/lib/libvirt/images, which is a shared location that is
set up as an NFS directory in this PoC. For example:

mount <nfs-server>:/opt/nfs/images /var/lib/libvirt/images

Set up the network bridge "installation" for VMs to enable external communication.
VMs must be able to download and install extra required packages for external sources.

cd /etc/sysconfig/network-scripts
vim ifcfg-installation

 DEVICE=installation
 TYPE=Bridge
 BOOTPROTO=dhcp
 ONBOOT=yes
vim ifcfg-eth0
 BRIDGE=installation
systemctl network restart

Download CentOS v8.0 ISO image for VM installation.
Download CentOS v8.0 ISO image from one of the mirror sites to the local host.

wget
http://isoredirect.centos.org/centos/8/isos/x86_64/CentOS-8-x86_64-1905-
dvd1.iso

VM OS installation Using "virt-manager"
Launch "virt-manager" to create a new VM. Click the icon as shown below.

virt-manager

208

2. Choose “Local install media (ISO images or CDROM)”.

209

3.

4.

Specify the location of the downloaded CentOS 8.0 ISO image.

Fill in the fields under "Choose Memory and CPU settings" for the VM.

210

5.

6.

Create the disk image at the default root user location, for example: /var/lib/libvirt/images (NFS
mount point). Make sure the storage is higher than 120GB and the virtual disk image is 60GB.

In the VM Name field, add "vm-01", and for the network selection, choose "Bridge installation:
Host device eth0".

211

7.

8.

Click "vm-01", then "Open".

Follow the installation with “Minimal Install” and “Virtual Block Device” selection.

212

9.

10.
11.

12.

Click "Begin Installation".

Reboot VM "vm-01" after installation is completed.
Use the VM's console terminal to enable external communication.

[~]$ vi /etc/sysconfig/network-scripts/ifcfg-eth0
 ONBOOT=yes
 BOOTPROTO=dhcp

systemctl network restart

Shut down VM "vm-01" and clone it to VM "vm-02".

213

13.

14.
a.

Clone the virtual disk VM-01.qcow to VM-02.qcow.

Test the VM installation and migration without VFs.
Boot both VMs and run ping to each other.

214

b.

c.

d.

1.

2.
a.

[root@vm-01]# ping 10.20.4.8

[root@vm-02]# ping 10.20.4.20

Perform live migration using the "virsh" command line on HV1 where VM "vm-01"
resides.

[root@HV1]# virsh list --all
 Id Name State
--
 24 VM-01 running

Perform live migration.

[root@HV1]# virsh migrate --live --unsafe --persistent --verbose VM-0
1 qemu+ssh://HV2/system

Verify that vm-01 is migrated and resides at HV2.

[root@HV2]# virsh list --all
 Id Name State
--
 1 VM-01 running
 2 VM-02 running

VFs to VMs Deployment
Make sure SR-IOV is enabled and VFs are available.

[root@HV2]# lspci -D | grep Mellanox
0000:06:00.0 Ethernet controller: Mellanox Technologies MT27800 Family
[ConnectX-5]
0000:06:00.1 Ethernet controller: Mellanox Technologies MT27800 Family
[ConnectX-5 Virtual Function]
0000:06:00.2 Ethernet controller: Mellanox Technologies MT27800 Family
[ConnectX-5 Virtual Function]
0000:06:00.3 Ethernet controller: Mellanox Technologies MT27800 Family
[ConnectX-5 Virtual Function]
0000:06:00.4 Ethernet controller: Mellanox Technologies MT27800 Family
[ConnectX-5 Virtual Function]

Enable the usage of VF2 "0000:06:00.3" and VF3 "0000:06:00.4" to assign to VM-01 and VM-02
respectively.

Attach VF to VM with XML file using "virsh" command line.
Create VM-01-vf.xml and VM-02-vf.xml files to assign VF1 to VM-01 and VF2 to VM-02 as
"hostdev" with MAC-address assigned.

215

b.
i.

ii.

iii.

iv.

c.

root@HV1]# cat VM-01-vf.xml
<interface type='hostdev' managed='yes'>
 <mac address='52:54:00:53:53:53'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x06' slot='0x00'
function='0x1'/>
 </source>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0c'
function='0x0'/>
</interface>

[root@HV2]# cat VM-02-vf.xml
<interface type='hostdev' managed='yes'>
 <mac address='52:54:00:54:54:54'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x06' slot='0x00'
function='0x2'/>
 </source>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0c'
function='0x0'/>
</interface>

Assign the VF to the VM by running the "virsh" command line.
Before attaching the VF, VM-01 and VM-02 should have a single network interface.

[root@VM-02]# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:06:83:8a brd ff:ff:ff:ff:ff:ff

On HV1 host, assign VF1 to VM-01.

[root@HV1]# virsh attach-device VM-01 VM-01-vf.xml
Device attached successfully

On HV2 host, assign VF2 to VM-02.

[root@HV2]# virsh attach-device VM-02 VM-02-vf.xml
Device attached successfully

After attaching the VFs, VM-01 and VM-02 should have two network interfaces. The
second interface "ens12" is the VF with the MAC-address assigned.

[root@VM-02]# ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state
UNKNOWN mode DEFAULT group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:06:83:8a brd ff:ff:ff:ff:ff:ff
3: ens12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq
state UP mode DEFAULT group default qlen 1000
 link/ether 52:54:00:54:54:54 brd ff:ff:ff:ff:ff:ff

Connect to VMs console, configure the IP address of the VF network interface and run
traffic.
Install iperf, configure the IP address and run traffic between them on both VMs.

216

1.

2.

3.

a.

[root@VM-01]# yum -y install iperf3
…
Resolving Dependencies
--> Running transaction check
---> Package iperf3.x86_64 0:3.1.7-2.el7 will be installed
…

[root@VM-01]# ip addr add 11.11.11.1 dev ens12

[root@VM-02]# yum -y install iperf3
…
Resolving Dependencies
--> Running transaction check
---> Package iperf3.x86_64 0:3.1.7-2.el7 will be installed
…

[root@VM-02]# ip addr add 11.11.11.2 dev ens12

[root@VM-02]# ping 11.11.11.1
64 bytes from 11.11.11.1: icmp_seq=1 ttl=64 time=0.046 ms
64 bytes from 11.11.11.1: icmp_seq=2 ttl=64 time=0.039 ms

[root@VM-02]# iperf3 -s -f m

Server listening on 5201

[root@VM-01]# iperf3 -c 11.11.11.2 -P 4 -t 600 -i 1

Mellanox ASAP2 with OVS Deployment

Perform the Mellanox ASAP2 installation and configuration on both HV1 and HV2.
Download, build and install the latest IP-route2.

[root@HV1]# git clone git://git.kernel.org/pub/scm/linux/kernel/git/
shemminger/iproute2.git
[root@HV1]# cd iproute2
[root@HV1]# ./configure
[root@HV1]# make -j32
[root@HV1]# make install

 Download, build and install OpenvSwitch-2.12.0.

[root@HV1]# git clone http://github.com/openvswitch/ovs
[root@HV1]# cd ovs; git checkout -b v2.12.0 v2.12.0
[root@HV1]# ./boot.sh
[root@HV1]# ./configure
[root@HV1]# make -j32; make install
[root@HV1]# export PATH=$PATH:/usr/local/share/openvswitch/scripts

Configure OVS with a single vSwitch "ovs-sriov" with hw-offload=true and tc-
policy=verbose.

Create OVS "ovs-sriov" and set hw-offload=true and tc-policy=verbose

217

b.

c.

[root@HV1]# export PATH=$PATH:/usr/local/share/openvswitch/scripts
[root@HV1]# ovs-ctl start

[root@HV1]# ovs-vsctl add-br ovs-sriov
[root@HV1]# ovs-vsctl set Open_vSwitch . other_config:hw-offload=true
[root@HV1]# ovs-vsctl set Open_vSwitch . other_config:tc-
policy=verbose
[root@HV1]# ovs-ctl restart
[root@HV1]# ovs-vsctl get Open_vSwitch . other_config
{hw-offload="true", tc-policy=verbose}

Enable SR-IOV and SWITCHDEV mode by executing "asap_config.sh" script for PF port 1.

[root@HV1] cat asap_config.sh

Number of Virtual Functions
NUM_VFS=4

Mellanox NIC ID
HCA=MT27800

pci=$(lspci |grep Mellanox|grep $HCA |head -n1|awk '{print $1}'| sed
s/\.0\$//g)
pf=$(ls -l /sys/class/net/| grep $pci|awk '{print $9}'| head -n1)
echo "pci=$pci pf=$pf HCA=$HCA"
sh -c "echo $NUM_VFS > /sys/class/net/${pf}/device/sriov_numvfs"

echo "Unbind devices"
i=1
while [! $i -gt $NUM_VFS]; do
 echo "unbinding 0000:${pci}.$i"
 sh -c "echo 0000:${pci}.$i > /sys/bus/pci/drivers/mlx5_core/
unbind 2>&1|tee > /dev/null"
 let i=i+1
done

echo "Configure ASAP & VSWITCH OFFLOAD"
devlink dev eswitch set pci/0000:${pci}.0 mode switchdev
ethtool -K $pf hw-tc-offload on
ip link set dev $pf up

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true
systemctl restart openvswitch
ovs-vsctl set Open_vSwitch . other_config:max-idle=100000

i=1
while [! $i -gt $NUM_VFS]; do
 echo "binding 0000:${pci}.$i"
 sh -c "echo 0000:${pci}.$i > /sys/bus/pci/drivers/mlx5_core/bind
2>&1|tee > /dev/null"
 let i=i+1
done

lspci|grep Mell
ls -l /sys/class/net/
ovs-vsctl show
ovs-dpctl show

Create a sub-function on PF port 1 with the script "create_sf.sh".

218

d.

[root@HV1] cat create_sf.sh

Number of Sub-Functions
NUM_SFS=4

HCA=MT27800

pci=$(lspci |grep Mellanox|grep "$HCA" |head -n1|awk '{print $1}'|
sed s/\.0\$//g)
DEV=0000:$pci.0

for ((i=0; i<$NUM_SFS; i++)); do
 UUID=`uuidgen`
 echo $UUID > /sys/bus/pci/devices/$DEV/mdev_supported_types/
mlx5_core-local/create
 echo $UUID > /sys/bus/mdev/drivers/vfio_mdev/unbind
 echo $UUID > /sys/bus/mdev/drivers/mlx5_core/bind

done

[root@HV1] ./create_sf.sh
[root@HV1] ip link
…
47: 06_00_0_32768: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT group default qlen 1000
 link/ether 7e:94:e9:79:48:0b brd ff:ff:ff:ff:ff:ff
48: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state
UP mode DEFAULT group default qlen 1000
 link/ether 36:76:c1:f9:3e:5d brd ff:ff:ff:ff:ff:ff
49: 06_00_0_32769: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT group default qlen 1000
 link/ether 96:03:d2:f1:27:f6 brd ff:ff:ff:ff:ff:ff
50: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state
UP mode DEFAULT group default qlen 1000
 link/ether 62:f0:68:a5:79:cb brd ff:ff:ff:ff:ff:ff
51: 06_00_0_32770: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT group default qlen 1000
 link/ether aa:b2:b8:8b:25:06 brd ff:ff:ff:ff:ff:ff
52: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state
UP mode DEFAULT group default qlen 1000
 link/ether 3e:17:f3:d5:f0:41 brd ff:ff:ff:ff:ff:ff
53: 06_00_0_32771: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
mq state UP mode DEFAULT group default qlen 1000
 link/ether ea:41:63:af:e7:e8 brd ff:ff:ff:ff:ff:ff
54: eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state
UP mode DEFAULT group default qlen 1000
 link/ether 26:2a:2b:52:10:7e brd ff:ff:ff:ff:ff:ff

NOTES:
======
There are 4 new SF netdevices (eth0, eth1, eth2, eth3) and their
representors netdevices (06_00_0_32768, 06_00_0_32769, 06_00_0_32770,
06_00_0_32771) created

Rename the sub-function's netdevices.

219

1.

2.

Rename sub function's netdevices so that both source and destination
systems can have same name.

[root@HV1]
$ ip link set eth0 down
$ ip link set eth0 name meth0
$ ip link set meth0 up

$ ip link set eth1 down
$ ip link set eth1 name meth1
$ ip link set meth1 up

$ ip link set eth2 down
$ ip link set eth2 name meth2
$ ip link set meth2 up

$ ip link set eth3 down
$ ip link set eth3 name meth3
$ ip link set meth3 up

Live Migration with Paravirtual Path and Traffic
Create bonding devices of VF and sub-function (SF) representors.

NOTES:
=======
bond0 is bond device of sf1's representor (primary slave) and vf1's
representor
bond1 is bond device of sf2's representor (primary slave) and vf2's
representor

[root@HV1]# ./bond_setup.sh bond0 06_00_0_32768 ens2_0
[root@HV1]# ./bond_setup.sh bond1 06_00_0_32769 ens2_1

[root@HV1]# cat ./bond_setup.sh

BOND=$1

put here two SF/VF reps for which you want to share the block
SFR1=$2
VFR2=$3

tc qdisc del dev $BOND ingress
tc qdisc del dev $SFR1 ingress
tc qdisc del dev $VFR2 ingress

ip link set dev $SFR1 nomaster
ip link set dev $VFR2 nomaster
ip link del $BOND

ip link add name $BOND type bond

ip link set dev $SFR1 down
ip link set dev $VFR2 down

ip link set dev $BOND type bond mode active-backup
ip link set dev $SFR1 master $BOND
ip link set dev $VFR2 master $BOND

make SFR1 the primary - this is paravirtual path
echo $SFR1 > /sys/class/net/$BOND/bonding/primary

ip link set dev $SFR1 up
ip link set dev $VFR2 up
ip link set dev $BOND up

Add Uplink "ens2" and bonding devices to "ovs-sriov" bridge.

220

3.
a.
b.

c.
d.

4.

a.

[root@HV1]# ovs-vsctl add-port ovs-sriov ens2
[root@HV1]# ovs-vsctl add-port ovs-sriov bond0 tag=100
[root@HV1]# ovs-vsctl add-port ovs-sriov bond1 tag=100

Modify the VM-01's xml file to have the default SF's macvtap-based virtio netdevice.
Edit VM-01 configuration with the same MAC address assigned to VF-1.
Make sure the alias name has the prefix "ua-".

Insert below configuration to VM-01.

[root@HV1]# virsh edit VM-01

<interface type='direct'>
 <mac address='52:54:00:53:53:53'/>
 <source dev='eth0' mode='passthrough'/>
 <target dev='macvtap0'/>
 <model type='virtio'/>
 <teaming type='persistent'/>
 <alias name='ua-net0'/>
 <address type='pci' domain='0x0000' bus='0x05' slot='0x00'
 function='0x0'/>
</interface>

Edit VM-02 configuration with the same MAC address assigned to VF-2.
Make sure the alias name has the prefix "ua-".

Insert below configuration to VM-01.

[root@HV1]# virsh edit VM-02

<interface type='direct'>
 <mac address='52:54:00:54:54:54'/>
 <source dev='eth1' mode='passthrough'/>
 <target dev='macvtap1'/>
 <model type='virtio'/>
 <alias name='ua-net1'/>
 <address type='pci' domain='0x0000' bus='0x06' slot='0x00'
 function='0x0'/>
</interface>

Restart the VMs and verify that the PV path exists in both VMs and that it is accessible.
Each VM should have two extra netdevs, such as: eth0, eth1 where eth0 is master and eth1 is
automatically enslaved to eth0.

[root@VM-01] ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode
DEFAULT qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP mode DEFAULT qlen 1000
 link/ether 52:54:00:1c:91:0a brd ff:ff:ff:ff:ff:ff
3: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT
qlen 1000
 link/ether 52:54:00:53:53:53 brd ff:ff:ff:ff:ff:ff
4: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master eth0 state DOWN
mode DEFAULT qlen 1000
 link/ether 52:54:00:53:53:53 brd ff:ff:ff:ff:ff:ff

Configure the IP address and run iperf on VMs over SF PF path.

[root@VM-01]# ip addr add 11.11.11.1 dev eth0
[root@VM-01]# iperf3 -s -f m

221

b.

c.

5.

[root@VM-02]# ip addr add 11.11.11.2 dev eth0
[root@VM-02]# ping 11.11.11.1
[root@VM-02]# iperf3 -c 11.11.11.1 -P 4 -t 600 -i 1

Modify the XML file of the VFs to link to the persistent device of the SFs.

[root@HV1]# cat VM-01-vf.xml
<interface type='hostdev' managed='yes'>
 <mac address='52:54:00:53:53:53'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x06' slot='0x00'
function='0x1'/>
 </source>
 <teaming type='transient' persistent='ua-net0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0c'
function='0x0'/>
</interface>

[root@HV2]# cat VM-02-vf.xml
<interface type='hostdev' managed='yes'>
 <mac address='52:54:00:54:54:54'/>
 <source>
 <address type='pci' domain='0x0000' bus='0x06' slot='0x00'
function='0x2'/>
 </source>
 <teaming type='transient' persistent='ua-net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x0c'
function='0x0'/>
</interface>

Attach VFs to VMs VM-01 and VM-02, and switch to the direct path in HyperVisors HV1
and HV2. I/O traffic should continue after the VFs have been successfully attached to the
VMs.

[root@HV1] virsh attach-device VM-01 VM-01-vf.xml; echo ens2_0 > /
sys/class/net/bond0/bonding/active_slave
Device attached successfully

[root@HV2] virsh attach-device VM-02 VM-02-vf.xml; echo ens2_1 > /
sys/class/net/bond1/bonding/active_slave
Device attached successfully

Each VM should have one extra netdev from the attached VF that is automatically
enslaved to eth0.

[root@VM-01] ip link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
mode DEFAULT qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP mode DEFAULT qlen 1000
 link/ether 52:54:00:1c:91:0a brd ff:ff:ff:ff:ff:ff
3: eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT qlen 1000
 link/ether 52:54:00:53:53:53 brd ff:ff:ff:ff:ff:ff
4: eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master eth0 state
DOWN mode DEFAULT qlen 1000
 link/ether 52:54:00:53:53:53 brd ff:ff:ff:ff:ff:ff
5: ens12: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master eth0 state
DOWN mode DEFAULT qlen 1000
 link/ether 52:54:00:53:53:53 brd ff:ff:ff:ff:ff:ff

Detach VF from VM, switch to SF PV path in HyperVisors HV1 and HV2. I/O traffic should pause
0.5s and then resume.

222

6.

7.

1.

2.

3.
4.

[root@HV1] virsh detach-device VM-01 VM-01-vf.xml; echo 06_00_0_32768 > /
sys/class/net/bond0/bonding/active_slave
Device detached successfully

Perform Live Migration on VM-01. iperf traffic should run as usual.

[root@HV1] virsh migrate --live --unsafe --persistent --verbose VM-01
 qemu+ssh://HV2/system

Attach VF to VM again and switch to the direct path in HyperVisor. I/O traffic should run as
usual.

[root@HV2] virsh attach-device VM-01 VM-01-vf.xml; echo ens2_0 > /sys/class
/net/bond0/bonding/active_slave
Device attached successfully

Enabling Paravirtualization

To enable Paravirtualization:

Create a bridge.

vim /etc/sysconfig/network-scripts/ifcfg-bridge0
DEVICE=bridge0
TYPE=Bridge
IPADDR=12.195.15.1
NETMASK=255.255.0.0
BOOTPROTO=static
ONBOOT=yes
NM_CONTROLLED=no
DELAY=0

Change the related interface (in the example below bridge0 is created over eth5).

DEVICE=eth5
BOOTPROTO=none
STARTMODE=on
HWADDR=00:02:c9:2e:66:52
TYPE=Ethernet
NM_CONTROLLED=no
ONBOOT=yes
BRIDGE=bridge0

Restart the service network.
Attach a bridge to VM.

The example below works on RHEL7.* without a Network Manager.

223

•
•
•
•
•

ifconfig -a
…
eth6 Link encap:Ethernet HWaddr 52:54:00:E7:77:99
 inet addr:13.195.15.5 Bcast:13.195.255.255 Mask:255.255.0.0
 inet6 addr: fe80::5054:ff:fee7:7799/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:481 errors:0 dropped:0 overruns:0 frame:0
 TX packets:450 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:22440 (21.9 KiB) TX bytes:19232 (18.7 KiB)
 Interrupt:10 Base address:0xa000
…

VXLAN Hardware Stateless Offloads
VXLAN technology provides scalability and security challenges solutions. It requires extension of the
traditional stateless offloads to avoid performance drop. ConnectX family cards offer the following
stateless offloads for a VXLAN packet, similar to the ones offered to non-encapsulated packets. VXLAN
protocol encapsulates its packets using outer UDP header.
Available hardware stateless offloads:

Checksum generation (Inner IP and Inner TCP/UDP)
Checksum validation (Inner IP and Inner TCP/UDP)
TSO support for inner TCP packets
RSS distribution according to inner packets attributes
Receive queue selection - inner frames may be steered to specific QPs

Enabling VXLAN Hardware Stateless Offloads
VXLAN offload is enabled by default for ConnectX-4 family devices running the minimum required
firmware version and a kernel version that includes VXLAN support.

To confirm if the current setup supports VXLAN, run:

ethtool -k $DEV | grep udp_tnl

Example:

ethtool -k ens1f0 | grep udp_tnl
tx-udp_tnl-segmentation: on

ConnectX-4 family devices support configuring multiple UDP ports for VXLAN offload. Ports can be
added to the device by configuring a VXLAN device from the OS command line using the "ip" command.
Note: If you configure multiple UDP ports for offload and exceed the total number of ports supported by
hardware, then those additional ports will still function properly, but will not benefit from any of the
stateless offloads.
Example:

ip link add vxlan0 type vxlan id 10 group 239.0.0.10 ttl 10 dev ens1f0 dstport
4789
ip addr add 192.168.4.7/24 dev vxlan0
ip link set up vxlan0

Note: dstport' parameters are not supported in Ubuntu 14.4.
The VXLAN ports can be removed by deleting the VXLAN interfaces.

224

1.

2.

•

Example:

ip link delete vxlan0

To verify that the VXLAN ports are offloaded, use debugfs (if supported):
Mount debugfs.

mount -t debugfs nodev /sys/kernel/debug

List the offloaded ports.

ls /sys/kernel/debug/mlx5/$PCIDEV/VXLAN

Where $PCIDEV is the PCI device number of the relevant ConnectX-4 family device.
Example:

ls /sys/kernel/debug/mlx5/0000:81:00.0/VXLAN 4789

Important Notes
VXLAN tunneling adds 50 bytes (14-eth + 20-ip + 8-udp + 8-vxlan) to the VM Ethernet frame.
Please verify that either the MTU of the NIC who sends the packets, e.g. the VM virtio-net NIC or
the host side veth device or the uplink takes into account the tunneling overhead. Meaning, the
MTU of the sending NIC has to be decremented by 50 bytes (e.g 1450 instead of 1500), or the
uplink NIC MTU has to be incremented by 50 bytes (e.g 1550 instead of 1500)

Q-in-Q Encapsulation per VF in Linux (VST)

This section describes the configuration of IEEE 802.1ad QinQ VLAN tag (S-VLAN) to the hypervisor per
Virtual Function (VF). The Virtual Machine (VM) attached to the VF (via SR- IOV) can send traffic with or
without C-VLAN. Once a VF is configured to VST QinQ encapsulation (VST QinQ), the adapter's hardware
will insert S-VLAN to any packet from the VF to the physical port. On the receive side, the adapter
hardware will strip the S-VLAN from any packet coming from the wire to that VF.

This feature is supported on ConnectX-5 and ConnectX-6 adapter cards only.

ConnectX-4 and ConnectX-4 Lx adapter cards support 802.1Q double-tagging (C-tag stack- ing
on C-tag) - refer to "802.1Q Double-Tagging" section.

225

•
•
•

•

•

1.

a.

b.

Setup
The setup assumes there are two servers equipped with ConnectX-5/ConnectX-6 adapter cards.

Prerequisites
Kernel must be of v3.10 or higher, or custom/inbox kernel must support vlan-stag
Firmware version 16/20.21.0458 or higher must be installed for ConnectX-5/ConnectX-6 HCAs
The server should be enabled in SR-IOV and the VF should be attached to a VM on the
hypervisor.

In order to configure SR-IOV in Ethernet mode for ConnectX-5/ConnectX-6 adapter cards,
please refer to "Configuring SR-IOV for ConnectX-4/ConnectX-5 (Ethernet)" section. In
the following configuration example, the VM is attached to VF0.

Network Considerations - the network switches may require increasing the MTU (to support
1522 MTU size) on the relevant switch ports.

Configuring Q-in-Q Encapsulation per Virtual Function for
ConnectX-5/ConnectX-6

Add the required S-VLAN (QinQ) tag (on the hypervisor) per port per VF. There are two ways to
add the S-VLAN:

By using sysfs:

echo '100:0:802.1ad' > /sys/class/net/ens1f0/device/sriov/0/vlan

By using the ip link command (available only when using the latest Kernel version):

ip link set dev ens1f0 vf 0 vlan 100 proto 802.1ad

Check the configuration using the ip link show command:

226

2.

3.

4.

1.

a.

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
mode DEFAULT qlen 1000
 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, vlan protocol 802.1ad,
spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off

Optional: Add S-VLAN priority. Use the qos parameter in the ip link command (or sysfs):

ip link set dev ens1f0 vf 0 vlan 100 qos 3 proto 802.1ad

Check the configuration using the ip link show command:

ip link show ens1f0
ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode
DEFAULT qlen 1000
 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, qos 3, vlan protocol 802.1ad,
spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust
off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust
off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust
off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust
off

Create a VLAN interface on the VM and add an IP address.

ip link add link ens5 ens5.40 type vlan protocol 802.1q id 40
ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40
ip link set dev ens5.40 up

To verify the setup, run ping between the two VMs and open Wireshark or tcpdump to capture
the packet.

802.1Q Double-Tagging
This section describes the configuration of 802.1Q double-tagging support to the hypervisor per Virtual
Function (VF). The Virtual Machine (VM) attached to the VF (via SR-IOV) can send traffic with or without
C-VLAN. Once a VF is configured to VST encapsulation, the adapter's hardware will insert C-VLAN to
any packet from the VF to the physical port. On the receive side, the adapter hardware will strip the C-
VLAN from any packet coming from the wire to that VF.

Configuring 802.1Q Double-Tagging per Virtual Function
Add the required C-VLAN tag (on the hypervisor) per port per VF. There are two ways to add the
C-VLAN:

By using sysfs:

227

b.

2.

3.

•

echo '100:0:802.1q' > /sys/class/net/ens1f0/device/sriov/0/vlan

By using the ip link command (available only when using the latest Kernel version):

ip link set dev ens1f0 vf 0 vlan 100

Check the configuration using the ip link show command:

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
mode DEFAULT qlen 1000
 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, spoof checking off, link-
state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state auto,
trust off

Create a VLAN interface on the VM and add an IP address.

ip link add link ens5 ens5.40 type vlan protocol 802.1q id 40
ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40
ip link set dev ens5.40 up

To verify the setup, run ping between the two VMs and open Wireshark or tcpdump to capture
the packet.

Resiliency
The chapter contains the following sections:

Reset Flow

Reset Flow
Reset Flow is activated by default. Once a "fatal device" error is recognized, both the HCA and the
software are reset, the ULPs and user application are notified about it, and a recovery process is
performed once the event is raised.
Currently, a reset flow can be triggered by a firmware assert with Recover Flow Request (RFR) only.
Firmware RFR support should be enabled explicitly using mlxconfig commands.

To query the current value, run:

mlxconfig -d /dev/mst/mt4115_pciconf0 query | grep SW_RECOVERY_ON_ERRORS

To enable RFR bit support, run:

mlxconfig -d /dev/mst/mt4115_pciconf0 set SW_RECOVERY_ON_ERRORS=true

228

Kernel ULPs
Once a "fatal device" error is recognized, an IB_EVENT_DEVICE_FATAL event is created, ULPs are
notified about the incident, and outstanding WQEs are simulated to be returned with "flush in error"
message to enable each ULP to close its resources and not get stuck via calling its "remove_one"
callback as part of "Reset Flow".
Once the unload part is terminated, each ULP is called with its "add_one" callback, its resources are
re-initialized and it is re-activated.

User Space Applications (IB/RoCE)
Once a "fatal device" error is recognized an IB_EVENT_DEVICE_FATAL event is created, applications
are notified about the incident and relevant recovery actions are taken.
Applications that ignore this event enter a zombie state, where each command sent to the kernel is
returned with an error, and no completion on outstanding WQEs is expected.
The expected behavior from the applications is to register to receive such events and recover once the
above event is raised. Same behavior is expected in case the NIC is unbounded from the PCI and later
is rebounded. Applications running over RDMA CM should behave in the same manner once the
RDMA_CM_EVENT_DEVICE_REMOVAL event is raised.
The below is an example of using the unbind/bind for NIC defined by "0000:04:00.0"

echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx5_core/bind

SR-IOV
If the Physical Function recognizes the error, it notifies all the VFs about it by marking their
communication channel with that information, consequently, all the VFs and the PF are reset.
If the VF encounters an error, only that VF is reset, whereas the PF and other VFs continue to work
unaffected.

Forcing the VF to Reset
If an outside "reset" is forced by using the PCI sysfs entry for a VF, a reset is executed on that VF once
it runs any command over its communication channel.
For example, the below command can be used on a hypervisor to reset a VF defined by 0000:04:00.1:

echo 1 >/sys/bus/pci/devices/0000:04:00.1/reset

Extended Error Handling (EEH)
Extended Error Handling (EEH) is a PowerPC mechanism that encapsulates AER, thus exposing AER
events to the operating system as EEH events.
The behavior of ULPs and user space applications is identical to the behavior of AER.

CRDUMP
CRDUMP feature allows for taking an automatic snapshot of the device CR-Space in case the device's
FW/HW fails to function properly.
Snapshots Triggers:

229

The snapshot is triggered after firmware detects a critical issue, requiring a recovery flow.
This snapshot can later be investigated and analyzed to track the root cause of the failure.
Currently, only the first snapshot is stored, and is exposed using a temporary virtual file. The virtual file
is cleared upon driver reset.
When a critical event is detected, a message indicating CRDUMP collection will be printed to the Linux
log. User should then back up the file pointed to in the printed message. The file location format is: /
proc/driver/mlx5_core/crdump/<pci address>
Snapshot should be copied by Linux standard tool for future investigation.

Firmware Tracer
This mechanism allows for the device's FW/HW to log important events into the event tracing system (/
sys/kernel/debug/tracing) without requiring any Mellanox tool.

This feature is enabled by default, and can be controlled using sysfs commands.

To disable the feature:

echo 0 > /sys/kernel/debug/tracing/events/mlx5/fw_tracer/enable

To enable the feature:

echo 1 > /sys/kernel/debug/tracing/events/mlx5/fw_tracer/enable

To view FW traces using vim text editor:

vim /sys/kernel/debug/tracing/trace

Docker Containers

Docker (containerization) performs operating-system-level virtualization. On Linux, Docker uses
resource isolation of the Linux kernel, to allow independent "containers" to run within a single Linux
kernel instance.
Docker containers are supported on MLNX_OFED using Docker runtime. Virtual RoCE and InfiniBand
devices are supported using SR-IOV mode.
Currently, RDMA/RoCE devices are supported in the modes listed in the following table:
Linux Containers Networking Modes

To be able to use this feature, trace points must be enabled in the kernel.

This feature is supported at beta level.

230

1.
2.

•
•

Orchestration and
Clustering Tool

Version Networking Mode Link Layer Virtualizati
on Mode

Docker Docker
Engine

17.03 or
higher

SR-IOV using sriov-plugin along with
docker run wrapper tool

InfiniBand and
Ethernet

SR-IOV

Kubernetes Kubernetes

1.10.3 or
higher

SR-IOV using device plugin, and
using SR- IOV CNI plugin

InfiniBand and
Ethernet

SR-IOV

VXLAN using IPoIB bridge InfiniBand Shared HCA

Docker Using SR-IOV
In this mode, Docker engine is used to run containers along with SR-IOV networking plugin. To isolate
the virtual devices, docker_rdma_sriov tool should be used. This mode is applicable to both InfiniBand
and Ethernet link layers.
To obtain the plugin, visit: https://hub.docker.com/r/mellanox/sriov-plugin/
To install the docker_rdma_sriov tool, use the container tools installer available via https://
hub.docker.com/r/mellanox/container_tools_installer/
For instructions on how to use Docker with SR-IOV, refer to Docker RDMA SRIOV Networking with
ConnectX4/ConnectX5/ConnectX6 Community post.

Kubernetes Using SR-IOV
In order to use RDMA in Kubernetes environment with SR-IOV networking mode, two main components
are required:

RDMA device plugin - this plugin allows for exposing RDMA devices in a Pod
SR-IOV CNI plugin - this plugin provisions VF net device in a Pod

When used in SR-IOV mode, this plugin enables SR-IOV and performs necessary configuration
including setting GUID, MAC, privilege mode, and Trust mode.
The plugin also allocates the VF devices when Pods are scheduled and requested by Kubernetes
framework.
For instructions on how to use Kubernetes with SR-IOV, refer to the following Community posts:

https://community.mellanox.com/docs/DOC-3151
https://community.mellanox.com/docs/DOC-3138

Kubernetes with Shared HCA
One RDMA device (HCA) can be shared among multiple Pods running in a Kubernetes worker nodes.
User defined networks are created using VXLAN or VETH networking devices. RDMA device (HCA) can
be shared among multiple Pods running in a Kubernetes worker nodes.
For instructions on how to use Kubernetes with Shared HCA, refer to the following Community post:
https://community.mellanox.com/docs/DOC-3153

Mediated Devices
The Mellanox mediated devices deliver flexibility in allowing to create accelerated devices without SR-
IOV on the Bluefield® system. These mediated devices support NIC and RDMA, and offer the same

https://hub.docker.com/r/mellanox/sriov-plugin/
https://hub.docker.com/r/mellanox/container_tools_installer/
https://hub.docker.com/r/mellanox/container_tools_installer/
https://community.mellanox.com/s/article/Docker-RDMA-SRIOV-Networking-with-ConnectX4-ConnectX5-ConnectX6
https://community.mellanox.com/s/article/Docker-RDMA-SRIOV-Networking-with-ConnectX4-ConnectX5-ConnectX6
https://community.mellanox.com/docs/DOC-3151
https://community.mellanox.com/docs/DOC-3138
https://community.mellanox.com/docs/DOC-3153

231

1.

2.

3.

4.

5.

6.

7.

8.

level of ASAP2 offloads as SR-IOV VFs. Mediates devices are supported using mlx5 sub-function
acceleration technology.

Configuring Mediated Device
To support sub-functions, PCIe BAR2 must be enabled. Run:

$ mlxconfig -d /dev/mst/mst41682_pciconf0 s PF_BAR2_SIZE 4
PF_BAR2_ENABLE=True

Cold reboot the BlueField host system so that the above settings can be applied on subsequent
reboot sequences.
By default, the firmware allows for a large number of maximum mdev devices. You must set the
maximum number of mediated devices to 2 or 4 devices. Run:

$ echo 4 > /sys/bus/pci/devices/0000:05:00.0/mdev_supported_types/
mlx5_core-local/max_mdevs

Mediated devices are uniquely identified using UUID. To create one, run:

$ uuidgen
$ echo 49d0e9ac-61b8-4c91-957e-6f6dbc42557d > /sys/bus/pci/devices/
0000:05:00.0/mdev_supported_types/mlx5_core-local/create

By default, if the driver vfio_mdev is loaded, newly created mdev devices are bound to it. To
make use of this newly created mdev device in order to create a netdevice and RDMA device, you
must first unbind it from that driver. Run:

$ echo 49d0e9ac-61b8-4c91-957e-6f6dbc42557d > /sys/bus/mdev/drivers/
vfio_mdev/unbind

Configure a MAC address for the mdev device. Run:

$ echo 00:11:22:33:44:55 > /sys/bus/mdev/devices/
49d0e9ac-61b8-4c91-957e-6f6dbc42557d/devlink-compat-config/mac_addr

Query the representor netdevice of the mdev device. Run:

$ cat /sys/bus/mdev/devices/49d0e9ac-61b8-4c91-957e-6f6dbc42557d/devlink-
compat-config/netdev

Bind the mediated device to mlx5_core driver. Run:

$ echo 49d0e9ac-61b8-4c91-957e-6f6dbc42557d > /sys/bus/mdev/drivers/
mlx5_core/bind

When an mdev device is bound to the mlx5_core driver, its respective netdevice and/or RDMA
device is also created.
To inspect the netdevice and RDMA device for the mdev, run:

$ ls /sys/bus/mdev/devices/49d0e9ac-61b8-4c91-957e-6f6dbc42557d/net/
$ ls /sys/bus/mdev/devices/49d0e9ac-61b8-4c91-957e-6f6dbc42557d/infiniband/

232

HPC-X™
For information on HPC-X, please refer to HPC-X™ User Manual at www.docs.mellanox.com, under
Software → HPC-X.

Fast Driver Unload
This feature enables optimizing mlx5 driver teardown time in shutdown and kexec flows.
The fast driver unload is disabled by default. To enable it, the prof_sel module parameter of
mlx5_core module should be set to 3.

OVS Offload Using ASAP² Direct

Overview
Open vSwitch (OVS) allows Virtual Machines (VMs) to communicate with each other and with the outside
world. OVS traditionally resides in the hypervisor and switching is based on twelve tuple matching on
flows. The OVS software based solution is CPU intensive, affecting system performance and preventing
full utilization of the available bandwidth.
Mellanox Accelerated Switching And Packet Processing (ASAP2) technology allows OVS offloading by
handling OVS data-plane in Mellanox ConnectX-5 onwards NIC hardware (Mellanox Embedded Switch
or eSwitch) while maintaining OVS control-plane unmodified. As a result, we observe significantly
higher OVS performance without the associated CPU load.
As of v5.0, OVS-DPDK became part of MLNX_OFED package as well. OVS-DPDK supports ASAP2 just as
the OVS-Kernel (Traffic Control (TC) kernel-based solution) does, yet with a different set of features.
The traditional ASAP2 hardware data plane is built over SR-IOV virtual functions (VFs), so that the VF is
passed through directly to the VM, with the Mellanox driver running within the VM. An alternate
approach that is also supported is vDPA (vhost Data Path Acceleration). vDPA allows the connection to
the VM to be established using VirtIO, so that the data-plane is built between the SR-IOV VF and the
standard VirtIO driver within the VM, while the control-plane is managed on the host by the vDPA
application. Two flavors of vDPA are supported, Software vDPA; and Hardware vDPA. Software vDPA
management functionality is embedded into OVS-DPDK, while Hardware vDPA uses a standalone
application for management, and can be run with both OVS-Kernel and OVS-DPDK. For further
information, please see sections VirtIO Acceleration through VF Relay (Software vDPA) and VirtIO
Acceleration through Hardware vDPA.

Installing OVS-Kernel ASAP² Packages
Install the required packages. For the complete solution, you need to install supporting MLNX_OFED
(v4.4 and above), iproute2, and openvswitch packages.

Installing OVS-DPDK ASAP² Packages
Run:

./mlnxofedinstall --ovs-dpdk –upstream-libs

233

1.

2.

3.

4.

Setting Up SR-IOV

To set up SR-IOV:
Choose the desired card.
The example below shows a dual-ported ConnectX-5 card (device ID 0x1017) and a single SR-
IOV VF (Virtual Function, device ID 0x1018).
In SR-IOV terms, the card itself is referred to as the PF (Physical Function).

lspci -nn | grep Mellanox

0a:00.0 Ethernet controller [0200]: Mellanox Technologies MT27800 Family
[ConnectX-5] [15b3:1017]
0a:00.1 Ethernet controller [0200]: Mellanox Technologies MT27800 Family
[ConnectX-5] [15b3:1017]

0a:00.2 Ethernet controller [0200]: Mellanox Technologies MT27800 Family
[ConnectX-5 Virtual Function] [15b3:1018]

Identify the Mellanox NICs and locate net-devices which are on the NIC PCI BDF.

ls -l /sys/class/net/ | grep 04:00

lrwxrwxrwx 1 root root 0 Mar 27 16:58 enp4s0f0 -> ../../devices/pci0000:00/
0000:00:03.0/0000:04:00.0/net/enp4s0f0
lrwxrwxrwx 1 root root 0 Mar 27 16:58 enp4s0f1 -> ../../devices/pci0000:00/
0000:00:03.0/0000:04:00.1/net/enp4s0f1
lrwxrwxrwx 1 root root 0 Mar 27 16:58 eth0 -> ../../devices/pci0000:00/0000:
00:03.0/0000:04:00.2/net/eth0
lrwxrwxrwx 1 root root 0 Mar 27 16:58 eth1 -> ../../devices/pci0000:00/0000:
00:03.0/0000:04:00.3/net/eth1

The PF NIC for port #1 is enp4s0f0, and the rest of the commands will be issued on it.
Check the firmware version.
Make sure the firmware versions installed are as state in the Release Notes document.

ethtool -i enp4s0f0 | head -5
driver: mlx5_core
version: 5.0-5
firmware-version: 16.21.0338
expansion-rom-version:
bus-info: 0000:04:00.0

Make sure SR-IOV is enabled on the system (server, card).
Make sure SR-IOV is enabled by the server BIOS, and by the firmware with up to N VFs, where N
is the number of VFs required for your environment. Refer to "Mellanox Firmware Tools" below
for more details.

Note that this section applies to both OVS-DPDK and OVS-Kernel similarly.

Enabling SR-IOV and creating VFs is done by the firmware upon admin directive as
explained in Step 5 below.

234

5.

6.

7.

8.

•

•

•
•

cat /sys/class/net/enp4s0f0/device/sriov_totalvfs
4

Turn ON SR-IOV on the PF device.

echo 2 > /sys/class/net/enp4s0f0/device/sriov_numvfs

Provision the VF MAC addresses using the IP tool.

ip link set enp4s0f0 vf 0 mac e4:11:22:33:44:50
ip link set enp4s0f0 vf 1 mac e4:11:22:33:44:51

Verify the VF MAC addresses were provisioned correctly and SR-IOV was turned ON.

cat /sys/class/net/enp4s0f0/device/sriov_numvfs
2

ip link show dev enp4s0f0
256: enp4s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master
ovs-system state UP mode DEFAULT group default qlen 1000
 link/ether e4:1d:2d:60:95:a0 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC e4:11:22:33:44:50, spoof checking off, link-state auto
 vf 1 MAC e4:11:22:33:44:51, spoof checking off, link-state auto

In the example above, the maximum number of possible VFs supported by the firmware is 4 and
only 2 are enabled.
Provision the PCI VF devices to VMs using PCI Pass-Through or any other preferred virt tool of
choice, e.g virt-manager.

For further information on SR-IOV, refer to https://community.mellanox.com/docs/DOC-2386.

OVS Hardware Offloads Configuration

OVS-Kernel Hardware Offloads

Configuring Uplink Representor Mode

The following are the uplink representor modes available for configuration
new_netdev: default mode - when found in this mode, the uplink representor is created as a
new netdevice
nic_netdev: when found in this mode, the NIC netdevice acts as an uplink representor device

Example:

echo nic_netdev > /sys/class/net/ens1f0/compat/devlink/uplink_rep_mode

Notes:
The mode can only be changed when found in Legacy mode
The mode is not saved when reloading mlx5_core

Please note that this step is optional. However, if you wish to configure uplink representor
mode, make sure this step is performed before configuring SwitchDev.

https://community.mellanox.com/docs/DOC-2386

235

•

1.

2.

3.

When two PFs in the same bonding device need to enter the SwitchDev mode, the uplink
representor mode for both PFs should be same (either nic_netdev or new_netdev)

Configuring SwitchDev
Unbind the VFs.

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Change the e-switch mode from legacy to switchdev on the PF device.
This will also create the VF representor netdevices in the host OS.

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

Set the network VF representor device names to be in the form of $PF_$VFID where $PF is
the PF netdev name, and $VFID is the VF ID=0,1,[..], either by:
* Using this rule in /etc/udev/rules.d/82-net-setup-link.rules

SUBSYSTEM=="net", ACTION=="add", ATTR{phys_switch_id}=="e41d2d60971d", \
ATTR{phys_port_name}!="", NAME="enp4s0f1_$attr{phys_port_name}"

Replace the phys_switch_id value ("e41d2d60971d" above) with the value matching your switch,
as obtained from:

ip -d link show enp4s0f1

Example output of device names when using the udev rule:

ls -l /sys/class/net/ens4*
lrwxrwxrwx 1 root root 0 Mar 27 17:14 enp4s0f0 -> ../../devices/pci0000:00/
0000:00:03.0/0000:04:00.0/net/enp4s0f0
lrwxrwxrwx 1 root root 0 Mar 27 17:15 enp4s0f0_0 -> ../../devices/virtual/
net/enp4s0f0_0
lrwxrwxrwx 1 root root 0 Mar 27 17:15 enp4s0f0_1 -> ../../devices/virtual/
net/enp4s0f0_1

* Using the supplied 82-net-setup-link.rules and vf-net-link-name.sh script to set the
VF representor device names.
From the scripts directory copy vf-net-link-name.sh to /etc/udev/ and 82-net-setup-
link.rules to /etc/udev/rules.d/.
Make sure vf-net-link-name.sh is executable.

VMs with attached VFs must be powered off to be able to unbind the VFs.

Before changing the mode, make sure that all VFs are unbound.

To go back to SR-IOV legacy mode:
echo legacy > /sys/class/net/enp4s0f0/compat/devlink/mode
Running this command, will also remove the VF representor netdevices.

236

4.

5.

6.

7.

8.

9.

Run the openvswitch service.

systemctl start openvswitch

Create an OVS bridge (here it's named ovs-sriov).

ovs-vsctl add-br ovs-sriov

Enable hardware offload (disabled by default).

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Restart the openvswitch service. This step is required for HW offload changes to take effect.

systemctl restart openvswitch

Add the PF and the VF representor netdevices as OVS ports.

ovs-vsctl add-port ovs-sriov enp4s0f0
ovs-vsctl add-port ovs-sriov enp4s0f0_0
ovs-vsctl add-port ovs-sriov enp4s0f0_1

Make sure to bring up the PF and representor netdevices.

ip link set dev enp4s0f0 up
ip link set dev enp4s0f0_0 up
ip link set dev enp4s0f0_1 up

The PF represents the uplink (wire).

ovs-dpctl show
system@ovs-system:
 lookups: hit:0 missed:192 lost:1
 flows: 2
 masks: hit:384 total:2 hit/pkt:2.00
 port 0: ovs-system (internal)
 port 1: ovs-sriov (internal)
 port 2: enp4s0f0
 port 3: enp4s0f0_0
 port 4: enp4s0f0_1

Run traffic from the VFs and observe the rules added to the OVS data-path.

HW offload policy can also be changed by setting the tc-policy using one on the
following values:

* none - adds a TC rule to both the software and the hardware (default)

* skip_sw - adds a TC rule only to the hardware

* skip_hw - adds a TC rule only to the software

The above change is used for debug purposes.

237

•
•

ovs-dpctl dump-flows

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=e4:1d:2d:a5:f3:9d),
eth_type(0x0800),ipv4(frag=no), packets:33, bytes:3234, used:1.196s,
actions:2

recirc_id(0),in_port(2),eth(src=e4:1d:2d:a5:f3:9d,dst=e4:11:22:33:44:50),
eth_type(0x0800),ipv4(frag=no), packets:34, bytes:3332, used:1.196s,
actions:3

In the example above, the ping was initiated from VF0 (OVS port 3) to the outer node (OVS port 2),
where the VF MAC is e4:11:22:33:44:50 and the outer node MAC is e4:1d:2d:a5:f3:9d
As shown above, two OVS rules were added, one in each direction.
Note that you can also verify offloaded packets using by adding type=offloaded to the command.
For example:

ovs-dpctl dump-flows type=offloaded

Flow Statistics and Aging
The aging timeout of OVS is given is ms and can be controlled with this command:

ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

Offloading VLANs
It is common to require the VM traffic to be tagged by the OVS. Such that, the OVS adds tags (vlan push)
to the packets sent by the VMs and strips (vlan pop) the packets received for this VM from other nodes/
VMs.
To do so, add a tag=$TAG section for the OVS command line that adds the representor ports, for
example here we use vlan ID 52.

ovs-vsctl add-port ovs-sriov enp4s0f0
ovs-vsctl add-port ovs-sriov enp4s0f0_0 tag=52
ovs-vsctl add-port ovs-sriov enp4s0f0_1 tag=52

The PF port should not have a VLAN attached. This will cause OVS to add VLAN push/pop actions when
managing traffic for these VFs.
To see how the OVS rules look with vlans, here we initiated a ping from VF0 (OVS port 3) to an outer
node (OVS port 2), where the VF MAC is e4:11:22:33:44:50 and the outer node MAC
is 00:02:c9:e9:bb:b2.
At this stage, we can see that two OVS rules were added, one in each direction.

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=00:02
:c9:e9:bb:b2),eth_type(0x0800),ipv4(frag=no), \
packets:0, bytes:0, used:never, actions:push_vlan(vid=52,pcp=0),2

recirc_id(0),in_port(2),eth(src=00:02:c9:e9:bb:b2,dst=e4:11:22:33:44:50
),eth_type(0x8100), \
vlan(vid=52,pcp=0),encap(eth_type(0x0800),ipv4(frag=no)), packets:0, bytes:0,
used:never, actions:pop_vlan,3

For outgoing traffic (in port = 3), the actions are push vlan (52) and forward to port 2
For incoming traffic (in port = 2), matching is done also on vlan, and the actions are pop vlan and
forward to port 3

238

•

•

•

•

Offloading VXLAN Encapsulation/Decapsulation Actions

In case of offloading VXLAN, the PF should not be added as a port in the OVS data-path but rather be
assigned with the IP address to be used for encapsulation.
The example below shows two hosts (PFs) with IPs 1.1.1.177 and 1.1.1.75, where the PF device on
both hosts is enp4s0f0 and the VXLAN tunnel is set with VNID 98:

On the first host:

ip addr add 1.1.1.177/24 dev enp4s0f1

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan
options:local_ip=1.1.1.177 options:remote_ip=1.1.1.75 options:key=98

On the second host:

ip addr add 1.1.1.75/24 dev enp4s0f1

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan
options:local_ip=1.1.1.75 options:remote_ip=1.1.1.177 options:key=98

When encapsulating guest traffic, the VF’s device MTU must be reduced to allow the host/HW add the
encap headers without fragmenting the resulted packet. As such, the VF’s MTU must be lowered to
1450 for IPv4 and 1430 for IPv6.
To see how the OVS rules look with vxlan encap/decap actions, here we initiated a ping from a VM on
the 1st host whose MAC is e4:11:22:33:44:50 to a VM on the 2nd host whose MAC
is 46:ac:d1:f1:4c:af
At this stage we see that two OVS rules were added to the first host; one in each direction.

ovs-dpctl show
system@ovs-system:
 lookups: hit:7869 missed:241 lost:2
 flows: 2
 masks: hit:13726 total:10 hit/pkt:1.69
 port 0: ovs-system (internal)
 port 1: ovs-sriov (internal)
 port 2: vxlan_sys_4789 (vxlan)
 port 3: enp4s0f1_0
 port 4: enp4s0f1_1

ovs-dpctl dump-flows

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=46
:ac:d1:f1:4c:af),eth_type(0x0800),ipv4(tos=0/0x3,frag=no),
packets:4, bytes:392, used:0.664s, actions:set(tunnel(tun_id=0x62,dst=1.1.1.75,t
tl=64,flags(df,key))),2

recirc_id(0),tunnel(tun_id=0x62,src=1.1.1.75,dst=1.1.1.177,ttl=64,flags(-df-
csum+key)),
in_port(2),skb_mark(0),eth(src=46:ac:d1:f1:4c:af,dst=e4:11:22:33:44:50
),eth_type(0x0800),ipv4(frag=no), packets:5, bytes:490, used:0.664s, actions:3

For outgoing traffic (in port = 3), the actions are set vxlan tunnel to host 1.1.1.75 (encap) and
forward to port 2
For incoming traffic (in port = 2), matching is done also on vxlan tunnel info which was
decapsulated, and the action is forward to port 3

VXLAN encapsulation / decapsulation offloading of OVS actions is supported only in
ConnectX-5 adapter cards.

239

Manually Adding TC Rules
Offloading rules can also be added directly, and not just through OVS, using the tc utility.
To enable TC ingress on both the PF and the VF.

tc qdisc add dev enp4s0f0 ingress
tc qdisc add dev enp4s0f0_0 ingress
tc qdisc add dev enp4s0f0_1 ingress

Examples

L2 Rule

tc filter add dev ens4f0_0 protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action drop

VLAN Rule

tc filter add dev ens4f0_0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action vlan push id 100 \
 action mirred egress redirect dev ens4f0

tc filter add dev ens4f0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan pop \
 action mirred egress redirect dev ens4f0_0

VXLAN Rule

240

•

•

•

•

•
•

•

tc filter add dev ens4f0_0 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action tunnel_key set \
 src_ip 20.1.12.1 \
 dst_ip 20.1.11.1 \
 id 100 \
 action mirred egress redirect dev vxlan100

tc filter add dev vxlan100 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \
 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \
 action mirred egress redirect dev ens4f0_0

Bond Rule
Bond rules can be added in one of the following methods:

Using shared block (requires kernel support):

tc qdisc add dev bond0 ingress_block 22 ingress
tc qdisc add dev ens4p0 ingress_block 22 ingress
tc qdisc add dev ens4p1 ingress_block 22 ingress

Add drop rule:

tc filter add block 22 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac e4:11:22:11:4a:51 \
 action drop

Add redirect rule from bond to representor:

tc filter add block 22 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev ens4f0_0

Add redirect rule from representor to bond:

tc filter add dev ens4f0_0 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac ec:0d:9a:8a:28:42 \
 action mirred egress redirect dev bond0

Without using shared block:
Add redirect rule from bond to representor:

tc filter add dev bond0 protocol arp parent ffff: prio 1 \
 flower \
 dst_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev ens4f0_0

Add redirect rule from representor to bond:

241

•
•
•

1.

2.

3.

tc filter add dev ens4f0_0 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac ec:0d:9a:8a:28:42 \
 action mirred egress redirect dev bond0

VLAN Modify
VLAN Modify rules can be added in one of the following methods:

tc filter add dev $REP_DEV1 protocol 802.1q ingress prio 1 flower \
 vlan_id 10 \
 action vlan modify id 11 pipe \
 action mirred egress redirect dev $REP_DEV2

tc filter add dev $DEV_REP1 protocol 802.1q ingress prio 1 flower \
 vlan_id 10 \
 action vlan pop pipe action vlan push id 11 pipe \
 action mirred egress redirect dev $REP_DEV2

SR-IOV VF LAG
SR-IOV VF LAG allows the NIC’s physical functions (PFs) to get the rules that the OVS will try to offload
to the bond net-device, and to offload them to the hardware e-switch. Bond modes supported are:

Active-Backup
XOR
LACP

SR-IOV VF LAG enables complete offload of the LAG functionality to the hardware. The bonding creates
a single bonded PF port. Packets from up-link can arrive from any of the physical ports, and will be
forwarded to the bond device.
When hardware offload is used, packets from both ports can be forwarded to any of the VFs. Traffic
from the VF can be forwarded to both ports according to the bonding state. Meaning, when in active-
backup mode, only one PF is up, and traffic from any VF will go through this PF. When in XOR or LACP
mode, if both PFs are up, traffic from any VF will split between these two PFs.

SR-IOV VF LAG Configuration on ASAP2

To enable SR-IOV VF LAG, both physical functions of the NIC should first be configured to SR-IOV
SwitchDev mode, and only afterwards bond the up-link representors.
The example below shows the creation of bond interface on two PFs:

Load bonding device and enslave the up-link representor (currently PF) net-device devices.

modprobe bonding mode=802.3ad
Ifup bond0 (make sure ifcfg file is present with desired bond
configuration)
ip link set enp4s0f0 master bond0
ip link set enp4s0f1 master bond0

Add the VF representor net-devices as OVS ports. If tunneling is not used, add the bond device
as well.

ovs-vsctl add-port ovs-sriov bond0
ovs-vsctl add-port ovs-sriov enp4s0f0_0
ovs-vsctl add-port ovs-sriov enp4s0f1_0

Make sure to bring up the PF and the representor netdevices.

242

•

•

•

•

ip link set dev bond0 up
ip link set dev enp4s0f0_0 up
ip link set dev enp4s0f1_0 up

Limitations

In VF LAG mode, outgoing traffic in load balanced mode is according to the origin ring, thus, half
of the rings will be coupled with port 1 and half with port 2. All the traffic on the same ring will
be sent from the same port.
VF LAG configuration is not supported when the NUM_OF_VFS configured in mlxconfig is higher
than 64.

Port Mirroring (Flow Based VF Traffic Mirroring for ASAP²)

Unlike para-virtual configurations, when the VM traffic is offloaded to the hardware via SR-IOV VF, the
host side Admin cannot snoop the traffic (e.g. for monitoring).
ASAP² uses the existing mirroring support in OVS and TC along with the enhancement to the offloading
logic in the driver to allow mirroring the VF traffic to another VF.
The mirrored VF can be used to run traffic analyzer (tcpdump, wireshark, etc) and observe the traffic of
the VF being mirrored.
The example below shows the creation of port mirror on the following configuration:

ovs-vsctl show
 09d8a574-9c39-465c-9f16-47d81c12f88a
 Bridge br-vxlan
 Port "enp4s0f0_1"
 Interface "enp4s0f0_1"
 Port "vxlan0"
 Interface "vxlan0"
 type: vxlan
 options: {key="100", remote_ip="192.168.1.14"}
 Port "enp4s0f0_0"
 Interface "enp4s0f0_0"
 Port "enp4s0f0_2"
 Interface "enp4s0f0_2"
 Port br-vxlan
 Interface br-vxlan
 type: internal
 ovs_version: "2.8.90"

If we want to set enp4s0f0_0 as the mirror port, and mirror all of the traffic, set it as follow:

 # ovs-vsctl -- --id=@p get port enp4s0f0_0 \
 -- --id=@m create mirror name=m0 select-all=true output-
port=@p \
 -- set bridge br-vxlan mirrors=@m

If we want to set enp4s0f0_0 as the mirror port, and only mirror the traffic, the destination is
enp4s0f0_1, set it as follow:

Once SR-IOV VF LAG is configured, all VFs of the two PFs will become part of the bond, and
will behave as described above.

Port Mirroring is currently supported in ConnectX-5 adapter cards only.

243

•

•

 # ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 output-
port=@p1 \
 -- set bridge br-vxlan mirrors=@m

If we want to set enp4s0f0_0 as the mirror port, and only mirror the traffic the source is
enp4s0f0_1, set it as follow:

 # ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-src-port=@p2 output-
port=@p1 \
 -- set bridge br-vxlan mirrors=@m

If we want to set enp4s0f0_0 as the mirror port and mirror, all the traffic on enp4s0f0_1, set it as
follow:

 # ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

To clear the mirror port:

 # ovs-vsctl clear bridge br-vxlan mirrors

Performance Tuning Based on Traffic Patterns
Offloaded flows (including connection tracking) are added to virtual switch FDB flow tables. FDB tables
have a set of flow groups. Each flow group saves the same traffic pattern flows. For example, for
connection tracking offloaded flow, TCP and UDP are different traffic patterns which end up in two
different flow groups.
A flow group has a limited size to save flow entries. By default, the driver has 4 big FDB flow groups.
Each of these big flow groups can save at most 4000000/(4+1)=800k different 5-tuple flow entries. For
scenarios with more than 4 traffic patterns, the driver provides a module parameter (num_of_groups)
to allow customization and performance tune.
The size of each big flow group can be calculated according to the following formula.

To change the number of big FDB flow groups, run:

$ echo <num_of_groups> > /sys/module/mlx5_core/parameters/num_of_groups

The change takes effect immediately if there is no flow inside the FDB table (no traffic running and all
offloaded flows are aged out), and it can be dynamically changed without reloading the driver.
The module parameter can be set statically in /etc/modprobe.d/mlnx.conf file. This way the
administrator will not be required to set it via sysfs each time the driver is reloaded.
If there are residual offloaded flows when changing this parameter, then the new configuration only
takes effect after all flows age out.

size = 4000000/(num_of_groups+1)

244

1.

2.

3.

4.

5.

OVS-DPDK Hardware Offloads

OVS-DPDK Hardware Offloads Configuration

To configure OVS-DPDK HW offloads:
Unbind the VFs.

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Note: VMs with attached VFs must be powered off to be able to unbind the VFs.
Change the e-switch mode from Legacy to SwitchDev on the PF device (make sure all VFs are
unbound). This will also create the VF representor netdevices in the host OS.

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

To revert to SR-IOV Legacy mode:

echo legacy > /sys/class/net/enp4s0f0/compat/devlink/mode

Note that running this command will also result in the removal of the VF representor
netdevices.
Bind the VFs.

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

Run the Open vSwitch service.

systemctl start openvswitch

Enable hardware offload (disabled by default).

Note that the default value of num_of_groups may change per MLNX_OFED driver version. The
following table lists the values that must be set when upgrading the MLNX_OFED version
prior to driver load, in order to achieve the same OOB experience.

MLNX_OFED Version num_of_groups Default Value

v4.7-3.2.9.0 4

v4.6-3.1.9.0.14 15

v4.6-3.1.9.0.15 15

v4.5-1.0.1.0.19 63

Note that OVS-Kernel is only supported on ConnectX-5 and BlueField NICs only.

245

6.

7.

8.

9.

1.

2.

3.

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Configure the DPDK white list.

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-extra="-w
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=1,dv_xmeta_en=1"

Restart the Open vSwitch service. This step is required for HW offload changes to take effect.

systemctl restart openvswitch

Add PF to OVS.

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-
devargs=0000:88:00.0

Add representor to OVS.

ovs-vsctl add-port br0-ovs representor -- set Interface representor
type=dpdk options:dpdk-devargs=0000:88:00.0,representor=[$rep]

Offloading VXLAN Encapsulation/Decapsulation Actions
vSwitch in userspace rather than kernel-based Open vSwitch requires an additional bridge. The
purpose of this bridge is to allow use of the kernel network stack for routing and ARP resolution.
The datapath needs to look-up the routing table and ARP table to prepare the tunnel header and
transmit data to the output port.

Configuring VXLAN Encap/Decap Offloads

To configure OVS-DPDK VXLAN:
Create a br-phy bridge.

ovs-vsctl add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-
set-external-id br-phy bridge-id br-phy -- set bridge br-phy fail-
mode=standalone other_config:hwaddr=98:03:9b:cc:21:e8

Attach PF interface to br-phy bridge.

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk options:dpdk-
devargs=0000:03:00.0

Configure IP to the bridge.

ip addr add 56.56.67.1/24 dev br-phy

•
•
•

The configuration is done with:

PF on 0000:03:00.0 PCI and MAC 98:03:9b:cc:21:e8
Local IP 56.56.67.1 - br-phy interface will be configured to this IP
Remote IP 56.56.68.1

246

4.

5.

6.

1.

2.

3.

4.

5.

6.

Create a br-ovs bridge.

ovs-vsctl add-br br-ovs -- set Bridge br-ovs datapath_type=netdev -- br-
set-external-id br-ovs bridge-id br-ovs -- set bridge br-ovs fail-
mode=standalone

Attach representor to br-ovs.

ovs-vsctl add-port br-ovs pf0vf0 -- set Interface pf0vf0 type=dpdk
options:dpdk-devargs=0000:03:00.0,representor=[0]

Add a port for the VXLAN tunnel.

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan
options:local_ip=56.56.67.1 options:remote_ip=56.56.68.1 options:key=45
 options:dst_port=4789

Connection Tracking Offload
Connection tracking enables stateful packet processing by keeping a record of currently open
connections.
OVS flows using connection tracking can be accelerated using advanced Network Interface Cards
(NICs) by offloading established connections.

SR-IOV VF LAG

To configure OVS-DPDK SR-IOV VF LAG:
Enable SR-IOV on the NICs.

mlxconfig -d <PCI> set SRIOV_EN=1

Allocate the desired number of VFs per port.

echo $n > /sys/class/net/<net name>/device/sriov_numvfs

Unbind all VFs.

echo <VF PCI> >/sys/bus/pci/drivers/mlx5_core/unbind

Change both NICs' mode to SwitchDev.

devlink dev eswitch set pci/<PCI> mode switchdev

Create Linux bonding using kernel modules.

modprobe bonding mode=<desired mode>

Note: Other bonding parameters can be added here. The supported Bond modes are: Active-Backup, XOR

and LACP.

Bring all PFs and VFs down.

ip link set <PF/VF> down

247

7.

8.

1.

2.

1.

2.

3.

Attach both PFs to the bond.

ip link set <PF> master bond0

To work with VF-LAG with OVS-DPDK, add the bond master (PF) to the bridge. Note that the first
PF on which you run "ip link set <PF> master bond0" becomes the bond master.

VirtIO Acceleration through VF Relay (Software vDPA)

In user space, there are two main approaches for communicating with a guest (VM), either through SR-
IOV, or through virtIO.
Phy ports (SR-IOV) allow working with port representor, which is attached to the OVS and a matching
VF is given with pass-through to the guest. HW rules can process packets from up-link and direct them
to the VF without going through SW (OVS). Therefore, using SR-IOV achieves the best performance.
However, SR-IOV architecture requires the guest to use a driver specific to the underlying HW. Specific
HW driver has two main drawbacks:

Breaks virtualization in some sense (guest is aware of the HW). It can also limit the type of
images supported.
Gives less natural support for live migration.

Using virtIO port solves both problems. However, it reduces performance and causes loss of some
functionalities, such as, for some HW offloads, working directly with virtIO. To solve this conflict, a new
netdev type- dpdkvdpa has been created. The new netdev is similar to the regular DPDK netdev, yet
introduces several additional functionalities.
dpdkvdpa translates between phy port to virtIO port. It takes packets from the Rx queue and sends
them to the suitable Tx queue, and allows transfer of packets from virtIO guest (VM) to a VF, and vice-
versa, benefitting from both SR-IOV and virtIO.

To add software vDPA port:

ovs-vsctl add-port br0 vdpa0 -- set Interface vdpa0 type=dpdkvdpa \
options:vdpa-socket-path=<sock path> \
options:vdpa-accelerator-devargs=<vf pci id> \
options:dpdk-devargs=<pf pci id>,representor=[id] \
options: vdpa-max-queues =<num queues>

Note: vdpa-max-queues is an optional field. When the user wants to configure 32 vDPA ports, the
maximum queues number is limited to 8.

Software vDPA Configuration in OVS-DPDK Mode

Prior to configuring vDPA in OVS-DPDK mode, follow the steps below.
Generate the VF.

echo 0 > /sys/class/net/enp175s0f0/device/sriov_numvfs
echo 4 > /sys/class/net/enp175s0f0/device/sriov_numvfs

 Unbind each VF.

echo <pci> > /sys/bus/pci/drivers/mlx5_core/unbind

Switch to SwitchDev mode.

This feature has not been accepted to the OVS-DPDK Upstream yet, making its API subject to
change.

248

4.

5.

1.

2.

3.

1.

2.

3.

4.

echo switchdev >> /sys/class/net/enp175s0f0/compat/devlink/mode

Bind each VF.

echo <pci> > /sys/bus/pci/drivers/mlx5_core/bind

 Initialize OVS with:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-offload=true

To configure Software vDPA in OVS-DPDK mode:
Open vSwitch configuration.

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-extra="-w
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=1,dv_xmeta_en=1"
/usr/share/openvswitch/scripts/ovs-ctl restart

Create OVS-DPDK bridge.

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev
ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-
devargs=0000:01:00.0

Create vDPA port as part of the OVS-DPDK bridge.

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0 type=dpdkvdpa
options:vdpa-socket-path=/var/run/virtio-forwarder/sock0 options:vdpa-
accelerator-devargs=0000:01:00.2 options:dpdk-devargs=0000:01:00.0,represen
tor=[0] options: vdpa-max-queues=8

Software vDPA Configuration in OVS-Kernel Mode

SW vDPA can also be used in configurations where the HW offload is done through TC and not DPDK.
Open vSwitch configuration.

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-w
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=0,idv_xmeta_en=0,isolat
ed_mode=1"
/usr/share/openvswitch/scripts/ovs-ctl restart

Create OVS-DPDK bridge.

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev

Create vDPA port as part of the OVS-DPDK bridge.

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0 type=dpdkvdpa
options:vdpa-socket-path=/var/run/virtio-forwarder/sock0 options:vdpa-
accelerator-devargs=0000:01:00.2 options:dpdk-devargs=0000:01:00.0,represen
tor=[0] options: vdpa-max-queues=8

Create Kernel bridge.

249

5.

1.

2.

1.

2.

3.

4.

5.

ovs-vsctl add-br br-kernel

Add representors to Kernel bridge.

ovs-vsctl add-port br-kernel enp1s0f0_0
ovs-vsctl add-port br-kernel enp1s0f0

VirtIO Acceleration through Hardware vDPA

Hardware vDPA Installation
 Hardware vDPA requires QEMU v4.0.0 and DPDK v20.02 as minimal versions.

To install QEMU:
Clone the sources:

git clone https://git.qemu.org/git/qemu.git
cd qemu
git checkout v4.0.0

Build QEMU:

mkdir bin
cd bin
../configure --target-list=x86_64-softmmu --enable-kvm
make -j24

To install DPDK:
Clone the sources:

git clone git://dpdk.org/dpdk
cd dpdk
git checkout v20.02

Install dependencies (if needed):

yum install cmake gcc libnl3-devel libudev-devel make pkgconfig valgrind-
devel pandoc libibverbs libmlx5 libmnl-devel -y

Configure DPDK:

export RTE_SDK=$PWD
make config T=x86_64-native-linuxapp-gcc
cd build
sed -i 's/\(CONFIG_RTE_LIBRTE_MLX5_PMD=\)n/\1y/g' .config
sed -i 's/\(CONFIG_RTE_LIBRTE_MLX5_VDPA_PMD=\)n/\1y/g' .config

Build DPDK:

make -j

Build the vDPA application:

250

1.

2.
a.

b.

c.

d.

cd $RTE_SDK/examples/vdpa/
make -j

Hardware vDPA Configuration

To configure huge pages:

mkdir -p /hugepages
mount -t hugetlbfs hugetlbfs /hugepages
echo <more> > /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/
nr_hugepages
echo <more> > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/
nr_hugepages

To configure a vDPA VirtIO interface in an existing VM's xml file (using libvirt):
Open the VM's configuration xml for editing:

virsh edit <domain name>

Modify/add the following:
Change the top line to:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/
qemu/1.0'>

Assign a memory amount and use 1GB page size for hugepages (size must be the same
as used for the vDPA application), so that the memory configuration looks like the
following.

<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
<memoryBacking>
 <hugepages>
 <page size='1048576' unit='KiB'/>
 </hugepages>
</memoryBacking>

Assign an amount of CPUs for the VM CPU configuration, so that the vcpu and cputune c
onfiguration looks like the following.

<vcpu placement='static'>5</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='14'/>
 <vcpupin vcpu='1' cpuset='16'/>
 <vcpupin vcpu='2' cpuset='18'/>
 <vcpupin vcpu='3' cpuset='20'/>
 <vcpupin vcpu='4' cpuset='22'/>
</cputune>

Set the memory access for the CPUs to be shared, so that the cpu configuration looks
like the following.

251

e.

f.

1.
2.
3.

<cpu mode='custom' match='exact' check='partial'>
 <model fallback='allow'>Skylake-Server-IBRS</model>
 <numa>
 <cell id='0' cpus='0-4' memory='8388608' unit='KiB'
memAccess='shared'/>
 </numa>
</cpu>

Set the emulator in use to be the one built in step "2. Build QEMU" above, so that the
emulator configuration looks as follows.

<emulator><path to qemu executable></emulator>

Add a virtio interface using qemu command line argument entries, so that the new
interface snippet looks as follows.

<qemu:commandline>
 <qemu:arg value='-chardev'/>
 <qemu:arg value='socket,id=charnet1,path=/tmp/sock-virtio0'/>
 <qemu:arg value='-netdev'/>
 <qemu:arg value='vhost-user,chardev=charnet1,queues=16,id=hostnet1'
/>
 <qemu:arg value='-device'/>
 <qemu:arg value='virtio-net-pci,mq=on,vectors=6,netdev=hostnet1,id=
net1,mac=e4:11:c6:d3:45:f2,bus=pci.0,addr=0x6,
 page-per-vq=on,rx_queue_size=1024,tx_queue_size=1024'/>
</qemu:commandline>

Note: In this snippet, the vhostuser socket file path, the amount of queues, the MAC and
the PCI slot of the VirtIO device can be configured.

Running Hardware vDPA

Create the ASAP2 environment:
Create the VFs.
Enter switchdev mode.
Set up OVS.

Run the vDPA application.

cd $RTE_SDK/examples/vdpa/build
./vdpa -w <VF PCI BDF>,class=vdpa --log-level=pmd,info -- -i

Create a vDPA port via the vDPA application CLI.

create /tmp/sock-virtio0 <PCI DEVICE BDF>

Note: The vhostuser socket file path must be the one used when configuring the VM.

Start the VM.

virsh start <domain name>

Hardware vDPA supports SwitchDev mode only.

252

1.

2.

3.

a.

b.

For further information on the vDPA application, please visit: https://doc.dpdk.org/guides/
sample_app_ug/vdpa.html.

Appendix: Mellanox Firmware Tools
Download and install the MFT package corresponding to your computer’s operating system. You would
need the kernel-devel or kernel-headers RPM before the tools are built and installed.
The package is available at http://www.mellanox.com => Products => Software => Firmware Tools.

Start the mst driver.

mst start
Starting MST (Mellanox Software Tools) driver set
Loading MST PCI module - Success
Loading MST PCI configuration module - Success
Create devices

Show the devices status.

ST modules:

 MST PCI module loaded
 MST PCI configuration module loaded

PCI devices:

DEVICE_TYPE MST PCI RDMA NET
NUMA
ConnectX4lx(rev:0) /dev/mst/mt4117_pciconf0.1 04:00.1 net-
enp4s0f1 NA
ConnectX4lx(rev:0) /dev/mst/mt4117_pciconf0 04:00.0 net-
enp4s0f0 NA

mlxconfig -d /dev/mst/mt4117_pciconf0 q | head -16

Device #1:

Device type: ConnectX4lx
PCI device: /dev/mst/mt4117_pciconf0

Configurations: Current
 SRIOV_EN True(1)
 NUM_OF_VFS 8
 PF_LOG_BAR_SIZE 5
 VF_LOG_BAR_SIZE 5
 NUM_PF_MSIX 63
 NUM_VF_MSIX 11
 LINK_TYPE_P1 ETH(2)
 LINK_TYPE_P2 ETH(2)

Make sure your configuration is as follows:
* SR-IOV is enabled (SRIOV_EN=1)
* The number of enabled VFs is enough for your environment (NUM_OF_VFS=N)
* The port’s link type is Ethernet (LINK_TYPE_P1/2=2) when applicable
If this is not the case, use mlxconfig to enable that, as follows:

Enable SR-IOV.

mlxconfig -d /dev/mst/mt4115_pciconf0 s SRIOV_EN=1

Set the number of required VFs.

https://doc.dpdk.org/guides/sample_app_ug/vdpa.html
https://doc.dpdk.org/guides/sample_app_ug/vdpa.html
http://www.mellanox.com/

253

c.

4.

5.

mlxconfig -d /dev/mst/mt4115_pciconf0 s NUM_OF_VFS=8

Set the link type to Ethernet.

mlxconfig -d /dev/mst/mt4115_pciconf0 s LINK_TYPE_P1=2
mlxconfig -d /dev/mst/mt4115_pciconf0 s LINK_TYPE_P2=2

Reset the firmware.

mlxfwreset -d /dev/mst/mt4115_pciconf0 reset

Query the firmware to make sure everything is set correctly.

mlxconfig -d /dev/mst/mt4115_pciconf0 q

254

Programming

Raw Ethernet Programming
Raw Ethernet programming enables writing an application that bypasses the kernel stack. To achieve
this, packet headers and offload options need to be provided by the application.
For a basic example on how to use Raw Ethernet programming, refer to the Raw Ethernet
Programming: Basic Introduction - Code Example Community post.

Packet Pacing
Packet pacing is a raw Ethernet sender feature that enables controlling the rate of each QP, per send
queue.
For a basic example on how to use packet pacing per flow over libibverbs, refer to Raw Ethernet
Programming: Packet Pacing - Code Example Community post.

TCP Segmentation Offload (TSO)
TCP Segmentation Offload (TSO) enables the adapter cards to accept a large amount of data with a size
greater than the MTU size. The TSO engine splits the data into separate packets and inserts the user-
specified L2/L3/L4 headers automatically per packet. With the usage of TSO, CPU is offloaded from
dealing with a large throughput of data.
To be able to program that on the sender side, refer to the Raw Ethernet Programming: TSO - Code
Example Community post.

ToS Based Steering
ToS/DSCP is an 8-bit field in the IP packet that enables different service levels to be assigned to
network traffic. This is achieved by marking each packet in the network with a DSCP code and
appropriating the corresponding level of service to it.
To be able to steer packets according to the ToS field on the receiver side, refer to the Raw Ethernet
Programming: ToS - Code Example Community post.

Flow ID Based Steering
Flow ID based steering enables developing a code that will steer packets using flow ID when developing
Raw Ethernet over verbs. For more information on flow ID based steering, refer to the Raw Ethernet
Programming: Flow ID Steering - Code Example Community post.

VXLAN Based Steering
VXLAN based steering enables developing a code that will steer packets using the VXLAN tunnel ID
when developing Raw Ethernet over verbs. For more information on VXLAN based steering, refer to the
Raw Ethernet Programming: VXLAN Steering - Code Example Community post.

This chapter is aimed for application developers and expert users that wish to develop
applications over MLNX_OFED.

https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--basic-introduction---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--packet-pacing---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--packet-pacing---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--tso---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--tso---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--tos---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--tos---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--flow-id-steering---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--flow-id-steering---code-example
https://community.mellanox.com/s/article/raw-ethernet-programming--vxlan-steering---code-example

255

•
•

•
•
•

Device Memory Programming

Device Memory is an API that allows using on-chip memory located on the device as a data buffer for
send/receive and RDMA operations. The device memory can be mapped and accessed directly by user
and kernel applications, and can be allocated in various sizes, registered as memory regions with local
and remote access keys for performing the send/receive and RDMA operations.
Using the device memory to store packets for transmission can significantly reduce transmission
latency compared to the host memory.

Device Memory Programming Model
The new API introduces a similar procedure to the host memory for sending packets from the buffer:

ibv_alloc_dm()/ibv_free_dm() - to allocate/free device memory
ibv_reg_dm_mr - to register the allocated device memory buffer as a memory region and get a
memory key for local/remote access by the device
ibv_memcpy_to_dm - to copy data to a device memory buffer
ibv_memcpy_from_dm - to copy data from a device memory buffer
ibv_post_send/ibv_post_receive - to request the device to perform a send/receive operation
using the memory key

For examples, see Device Memory.

RDMA-CM QP Timeout Control
RDMA-CM QP Timeout Control feature enables users to control the QP timeout for QPs created with
RDMA-CM.
A new option in 'rdma_set_option’ function has been added to enable overriding calculated QP timeout,
in order to provide QP attributes for QP modification. To achieve that, rdma_set_option() should be
called with the new flag RDMA_OPTION_ID_ACK_TIMEOUT. Example:

rdma_set_option(cma_id, RDMA_OPTION_ID, RDMA_OPTION_ID_ACK_TIMEOUT, &timeout,
sizeof(timeout));

RDMA-CM Application Managed QP
Applications which do not create a QP through rdma_create_qp() may want to postpone the
ESTABLISHED event on the passive side, to let the active side complete an application-specific
connection establishment phase. For example, modifying the init state of the QP created by the
application to RTR state, or make some preparations for receiving messages from the passive side. The
feature returns a new event on the active side: CONNECT_RESPONSE, instead of ESTABLISHED, if id-
>qp==NULL. This gives the application a chance to perform the extra connection setup. Afterwards, the
new rdma_establish() API should be called to complete the connection and generate an ESTABLISHED
event on the passive side.
In addition, this feature exposes the 'rdma_init_qp_attr' function in librdmacm API, which enables
applications to get the parameters for creating Address Handler (AH) or control QP attributes after its
creation.

This feature is supported on ConnectX-5/ConnectX-5 Ex adapter cards and above only.

https://docs.mellanox.com/display/rdmacore50/Device+Memory

256

1.
2.

1.
2.

1.

2.

1.

2.

•

InfiniBand Fabric Utilities
This section first describes common configuration, interface, and addressing for all the tools in the
package.

Common Configuration, Interface and Addressing

Topology File (Optional)
An InfiniBand fabric is composed of switches and channel adapter (HCA/TCA) devices. To identify
devices in a fabric (or even in one switch system), each device is given a GUID (a MAC equivalent). Since
a GUID is a non-user-friendly string of characters, it is better to alias it to a meaningful, user-given
name. For this objective, the IB Diagnostic Tools can be provided with a “topology file”, which is an
optional configuration file specifying the IB fabric topology in user-given names.
For diagnostic tools to fully support the topology file, the user may need to provide the local system
name (if the local hostname is not used in the topology file).
To specify a topology file to a diagnostic tool use one of the following two options:

On the command line, specify the file name using the option ‘-t <topology file name>’
Define the environment variable IBDIAG_TOPO_FILE

To specify the local system name to an diagnostic tool use one of the following two options:
On the command line, specify the system name using the option ‘-s <local system name>’
Define the environment variable IBDIAG_SYS_NAME

InfiniBand Interface Definition
The diagnostic tools installed on a machine connect to the IB fabric by means of an HCA port through
which they send MADs. To specify this port to an IB diagnostic tool use one of the following options:

On the command line, specify the port number using the option ‘-p <local port number>’ (see
below)
Define the environment variable IBDIAG_PORT_NUM

In case more than one HCA device is installed on the local machine, it is necessary to specify the
device’s index to the tool as well. For this use on of the following options:

On the command line, specify the index of the local device using the following option: ‘-i <index
of local device>’
Define the environment variable IBDIAG_DEV_IDX

Addressing

The following addressing modes can be used to define the IB ports:
Using a Directed Route to the destination: (Tool option ‘-d’)
This option defines a directed route of output port numbers from the local port to the
destination.

This section applies to the ibdiagpath tool only. A tool command may require defining the
destination device or port to which it applies.

257

•

•

Using port LIDs: (Tool option ‘-l’):
In this mode, the source and destination ports are defined by means of their LIDs. If the fabric is
configured to allow multiple LIDs per port, then using any of them is valid for defining a port.
Using port names defined in the topology file: (Tool option ‘-n’)
This option refers to the source and destination ports by the names defined in the topology file.
(Therefore, this option is relevant only if a topology file is specified to the tool.) In this mode, the
tool uses the names to extract the port LIDs from the matched topology, then the tool operates
as in the ‘-l’ option.

Diagnostic Utilities
The diagnostic utilities described in this chapter provide means for debugging the connectivity and
status of InfiniBand (IB) devices in a fabric.
Diagnostic Utilities

Utility Description

dump_fts Dumps tables for every switch found in an ibnetdiscover scan of the subnet.
The dump file format is compatible with loading into OpenSM using the -R file
-U /path/to/dump-file syntax.

For further information, please refer to the tool’s man page.

ibaddr Can be used to show the LID and GID addresses of the specified port or the
local port by default. This utility can be used as simple address resolver.

For further information, please refer to the tool’s man page.

ibcacheedit Allows users to edit an ibnetdiscover cache created through the --cache
option in ibnetdiscover(8).

For further information, please refer to the tool’s man page.

ibccconfig Supports the configuration of congestion control settings on switches and
HCAs.

For further information, please refer to the tool’s man page.

ibccquery Supports the querying of settings and other information related to congestion
control.

For further information, please refer to the tool’s man page.

ibcongest Provides static congestion analysis. It calculates routing for a given topology
(topo-mode) or uses extracted lst/fdb files (lst-mode). Additionally, it analyzes
congestion for a traffic schedule provided in a "schedule-file" or uses an
automatically generated schedule of all-to-all-shift.

To display a help message which details the tool's options, please run "/opt/
ibutils2/bin/ibcongest -h".

For further information, please refer to the tool’s man page.

ibdev2netdev Enables association between IB devices and ports and the associated net
device. Additionally it reports the state of the net device link.

For further information, please refer to the tool’s man page.

258

•
•
•
•
•
•
•
•
•
•
•

Utility Description

ibdiagnet (of ibutils) This version of ibdiagnet is included in the ibutils package, and it is not run by
default after installing Mellanox OFED.

To use this ibdiagnet version and not that of the ibutils package, you need to
specify the full path: /opt/ibutils/bin

Note: ibdiagnet is an obsolete package. We recommend using ibdiagnet from
ibutils2.

For further information, please refer to the tool’s man page.

ibdiagnet (of ibutils2) Scans the fabric using directed route packets and extracts all the available
information regarding its connectivity and devices. An ibdiagnet run performs
the following stages:

Fabric discovery
Duplicated GUIDs detection
Links in INIT state and unresponsive links detection
Counters fetch
Error counters check
Routing checks
Link width and speed checks
Alias GUIDs check
Subnet Manager check
Partition keys check
Nodes information

Note: This version of ibdiagnet is included in the ibutils2 package, and it is run
by default after installing Mellanox OFED. To use this ibdiagnet version, run:
ibdiagnet.

For further information, please refer to the tool’s man page.

ibdiagpath Traces a path between two end-points and provides information regarding the
nodes and ports traversed along the path. It utilizes device specific health
queries for the different devices along the path.

The way ibdiagpath operates depends on the addressing mode used in the
command line. If directed route addressing is used (--dr_path flag), the local
node is the source node and the route to the destination port is known apriori
(for example: ibdiagpath --dr_path 0,1). On the other hand, if LID-route
addressing is employed, --src_lid and --dest_lid, then the source and
destination ports of a route are specified by their LIDs. In this case, the actual
path from the local port to the source port, and from the source port to the
destination port, is defined by means of Subnet Management Linear
Forwarding Table queries of the switch nodes along that path. Therefore, the
path cannot be predicted as it may change.

Example: ibdiagpath --src_lid 1 --dest_lid 28

For further information, please refer to the tool's -help flag.

259

•
•

1.
2.
3.

4.

•

•

Utility Description

ibdump Dump InfiniBand traffic that flows to and from Mellanox Technologies
ConnectX® family adapters InfiniBand ports.

Note the following:

ibdump is not supported for Virtual functions (SR-IOV)
Infiniband traffic sniffing is supported on all HCAs

The dump file can be loaded by the Wireshark tool for graphical traffic
analysis.

The following describes a workflow for local HCA (adapter) sniffing:

Run ibdump with the desired options
Run the application that you wish its traffic to be analyzed
Stop ibdump (CTRL-C) or wait for the data buffer to fill (in --mem-
mode)
Open Wireshark and load the generated file

To download Wireshark for a Linux or Windows environment go to
www.wireshark.org.

Notes:

Although ibdump is a Linux application, the generated .pcap file may
be analyzed on either operating system.
If one of the HCA's ports is configured as InfiniBand, ibdump requires
IPoIB DMFS to be enabled. For further information, please refer to
Flow Steering Configuration section.

For further information, please refer to the tool’s man page.

iblinkinfo Reports link info for each port in an InfiniBand fabric, node by node. Optionally,
iblinkinfo can do partial scans and limit its output to parts of a fabric.

For further information, please refer to the tool’s man page.

ibnetdiscover Performs InfiniBand subnet discovery and outputs a human readable topology
file. GUIDs, node types, and port numbers are displayed as well as port LIDs
and node descriptions. All nodes (and links) are displayed (full topology).

This utility can also be used to list the current connected nodes. The output is
printed to the standard output unless a topology file is specified.

For further information, please refer to the tool’s man page.

ibnetsplit Automatically groups hosts and creates scripts that can be run in order to
split the network into sub-networks containing one group of hosts.

For further information, please refer to the tool’s man page.

ibnodes Uses the current InfiniBand subnet topology or an already saved topology file
and extracts the InfiniBand nodes (CAs and switches).

For further information, please refer to the tool’s man page.

ibping Uses vendor mads to validate connectivity between InfiniBand nodes. On exit,
(IP) ping like output is show. ibping is run as client/server. The default is to run
as client. Note also that a default ping server is implemented within the
kernel.

For further information, please refer to the tool’s man page.

http://shark.org/

260

•
•

•
•

Utility Description

ibportstate Enables querying the logical (link) and physical port states of an InfiniBand
port. It also allows adjusting the link speed that is enabled on any InfiniBand
port.

If the queried port is a switch port, then ibportstate can be used to:

disable, enable or reset the port
validate the port’s link width and speed against the peer port

In case of multiple channel adapters (CAs) or multiple ports without a CA/ port
being specified, a port is chosen by the utility according to the following
criteria:

The first ACTIVE port that is found.
If not found, the first port that is UP (physical link state is LinkUp).

For further information, please refer to the tool’s man page.

ibqueryerrors The default behavior is to report the port error counters which exceed a
threshold for each port in the fabric. The default threshold is zero (0). Error
fields can also be suppressed entirely.

In addition to reporting errors on every port, ibqueryerrors can report the port
transmit and receive data as well as report full link information to the remote
port if available.

For further information, please refer to the tool’s man page.

ibroute Uses SMPs to display the forwarding tables—unicast (LinearForwarding-
Table or LFT) or multicast (MulticastForwardingTable or MFT)—for the
specified switch LID and the optional lid (mlid) range. The default range is all
valid entries in the range 1 to FDBTop.

For further information, please refer to the tool’s man page.

ibstat ibstat is a binary which displays basic information obtained from the local IB
driver. Output includes LID, SMLID, port state, link width active, and port
physical state.

For further information, please refer to the tool’s man page.

ibstatus Displays basic information obtained from the local InfiniBand driver. Output
includes LID, SMLID, port state, port physical state, port width and port rate.
For further information, please refer to the tool’s man page.

ibswitches Traces the InfiniBand subnet topology or uses an already saved topology file to
extract the InfiniBand switches.

For further information, please refer to the tool’s man page.

ibsysstat Uses vendor mads to validate connectivity between InfiniBand nodes and
obtain other information about the InfiniBand node. ibsysstat is run as client/
server. The default is to run as client.

For further information, please refer to the tool’s man page.

261

•

•

Utility Description

ibtopodiff Compares a topology file and a discovered listing ofsubnet.lst/ibdiagnet.lst
and reports mismatches.

Two different algorithms provided:

Using the -e option is more suitable for MANY mismatches it applies
less heuristics and provide details about the match
Providing the -s, -p and -g starts a detailed heuristics that should be
used when only small number of changes are expected

For further information, please refer to the tool’s man page.

ibtracert Uses SMPs to trace the path from a source GID/LID to a destination GID/ LID.
Each hop along the path is displayed until the destination is reached or a hop
does not respond. By using the -m option, multicast path tracing can be
performed between source and destination nodes.

For further information, please refer to the tool’s man page.

ibv_asyncwatch Display asynchronous events forwarded to userspace for an InfiniBand device.

For further information, please refer to the tool’s man page.

ibv_devices Lists InfiniBand devices available for use from userspace, including node
GUIDs.

For further information, please refer to the tool’s man page.

ibv_devinfo Queries InfiniBand devices and prints about them information that is available
for use from userspace.

For further information, please refer to the tool’s man page.

mstflint Queries and burns a binary firmware-image file on non-volatile (Flash)
memories of Mellanox InfiniBand and Ethernet network adapters. The tool
requires root privileges for Flash access.

To run mstflint, you must know the device location on the PCI bus.

Note: If you purchased a standard Mellanox Technologies network adapter
card, please download the firmware image from www.mellanox.com > Support
> Firmware Download. If you purchased a non-standard card from a vendor
other than Mellanox Technologies, please contact your vendor.

For further information, please refer to the tool’s man page.

perfquery Queries InfiniBand ports’ performance and error counters. Optionally, it
displays aggregated counters for all ports of a node. It can also reset counters
after reading them or simply reset them.

For further information, please refer to the tool’s man page.

saquery Issues the selected SA query. Node records are queried by default. For further
information, please refer to the tool’s man page.

sminfo Issues and dumps the output of an sminfo query in human readable format.
The target SM is the one listed in the local port info or the SM specified by the
optional SM LID or by the SM direct routed path.

Note: Using sminfo for any purpose other than a simple query might result in
a malfunction of the target SM.

For further information, please refer to the tool’s man page.

http://www.mellanox.com/

262

•

•

•

1.
2.
3.
4.

Utility Description

smparquery Sends SMP query for adaptive routing and private LFT features. For further
information, please refer to the tool’s man page.

smpdump A general purpose SMP utility which gets SM attributes from a specified SMA.
The result is dumped in hex by default.

For further information, please refer to the tool’s man page.

smpquery Provides a basic subset of standard SMP queries to query Subnet
management attributes such as node info, node description, switch info, and
port info.

For further information, please refer to the tool’s man page.

Link Level Retransmission (LLR) in FDR Links
With the introduction of FDR 56 Gbps technology, Mellanox enabled a proprietary technology called
LLR (Link Level Retransmission) to improve the reliability of FDR links.
This proprietary LLR technology adds additional CRC checking to the data stream and retransmits
portions of packets with CRC errors at the local link level. Customers should be aware of the following
facts associated with LLR technology:

Traditional methods of checking the link health can be masked because the LLR technology
automatically fixes errors. The traditional IB symbol error counter will show no errors when LLR
is active.
Latency of the fabric can be impacted slightly due to LLR retransmissions. Traditional IB
performance utilities can be used to monitor any latency impact.
Bandwidth of links can be reduced if cable performance degrades and LLR retransmissions
become too numerous. Traditional IB bandwidth performance utilities can be used to monitor
any bandwidth impact.

Due to these factors, an LLR retransmission rate counter has been added to the ibdiagnet utility that
can give end users an indication of the link health.

To monitor LLR retransmission rate:
Run ibdiagnet, no special flags required.
If the LLR retransmission rate limit is exceeded it will print to the screen.
The default limit is set to 500 and requires further investigation if exceeded.
The LLR retransmission rate is reflected in the results file /var/tmp/ibdiagnet2/ibdiagnet2.pm.

The default value of 500 retransmissions/sec has been determined by Mellanox based on the extensive
simulations and testing. Links exhibiting a lower LLR retransmission rate should not raise special
concern.

Performance Utilities
The performance utilities described in this chapter are intended to be used as a performance micro-
benchmark.

http://ibdiagnet2.pm

263

Utility Description

ib_atomic_bw Calculates the BW of RDMA Atomic transactions between a pair of machines.
One acts as a server and the other as a client. The client RDMA sends atomic
operation to the server and calculate the BW by sampling the CPU each time
it receive a successful completion. The test supports features such as
Bidirectional, in which they both RDMA atomic to each other at the same
time, change of MTU size, tx size, number of iteration, message size and
more. Using the "-a" flag provides results for all message sizes.

For further information, please refer to the tool’s man page.

ib_atomic_lat Calculates the latency of RDMA Atomic transaction of message_size between
a pair of machines. One acts as a server and the other as a client. The client
sends RDMA atomic operation and sample the CPU clock when it receives a
successful completion, in order to calculate latency.

For further information, please refer to the tool’s man page.

ib_read_bw Calculates the BW of RDMA read between a pair of machines. One acts as a
server and the other as a client. The client RDMA reads the server memory
and calculate the BW by sampling the CPU each time it receive a successful
completion. The test supports features such as Bidirectional, in which they
both RDMA read from each other memory's at the same time, change of MTU
size, tx size, number of iteration, message size and more.

Read is available only in RC connection mode (as specified in IB spec). For
further information, please refer to the tool’s man page.

ib_read_lat Calculates the latency of RDMA read operation of message_size between a
pair of machines. One acts as a server and the other as a client. They
perform a ping pong benchmark on which one side RDMA reads the memory
of the other side only after the other side have read his memory. Each of the
sides samples the CPU clock each time they read the other side memory , in
order to calculate latency. Read is available only in RC connection mode (as
specified in IB spec).

For further information, please refer to the tool’s man page.

ib_send_bw Calculates the BW of SEND between a pair of machines. One acts as a server
and the other as a client. The server receive packets from the client and they
both calculate the throughput of the operation. The test supports features
such as Bidirectional, on which they both send and receive at the same time,
change of MTU size, tx size, number of iteration, message size and more.
Using the "-a" provides results for all message sizes.

For further information, please refer to the tool’s man page.

ib_send_lat Calculates the latency of sending a packet in message_size between a pair of
machines. One acts as a server and the other as a client. They perform a ping
pong benchmark on which you send packet only if you receive one. Each of
the sides samples the CPU each time they receive a packet in order to
calculate the latency. Using the "-a" provides results for all message sizes.

For further information, please refer to the tool’s man page.

264

Utility Description

ib_write_bw Calculates the BW of RDMA write between a pair of machines. One acts as a
server and the other as a client. The client RDMA writes to the server
memory and calculates the BW by sampling the CPU each time it receives a
successful completion. The test supports features such as Bidirectional, in
which they both RDMA write to each other at the same time, change of MTU
size, tx size, number of iteration, message size and more. Using the "-a" flag
provides results for all message sizes.

For further information, please refer to the tool’s man page.

ib_write_lat Calculates the latency of RDMA write operation of message_size between a
pair of machines. One acts as a server and the other as a client. They
perform a ping pong benchmark on which one side RDMA writes to the other
side memory only after the other side wrote on his memory. Each of the sides
samples the CPU clock each time they write to the other side memory, in
order to calculate latency.

For further information, please refer to the tool’s man page.

raw_ethernet_bw Calculates the BW of SEND between a pair of machines. One acts as a server
and the other as a client. The server receive packets from the client and they
both calculate the throughput of the operation. The test supports features
such as Bidirectional, on which they both send and receive at the same time,
change of MTU size, tx size, number of iteration, message size and more.
Using the "-a" provides results for all message sizes.

For further information, please refer to the tool’s man page.

raw_ethernet_lat Calculates the latency of sending a packet in message_size between a pair of
machines. One acts as a server and the other as a client. They perform a ping
pong benchmark on which you send packet only if you receive one. Each of
the sides samples the CPU each time they receive a packet in order to
calculate the latency. Using the "-a" provides results for all message sizes.

For further information, please refer to the tool’s man page.

265

•
•
•
•
•
•
•
•
•
•

1.
2.

1.
2.

Troubleshooting
You may be able to easily resolve the issues described in this section. If a problem persists and you are
unable to resolve it yourself, please contact your Mellanox representative or Mellanox Support at
support@mellanox.com.
The chapter contains the following sections:

General Issues
Ethernet Related Issues
InfiniBand Related Issues
Installation Related Issues
Performance Related Issues
SR-IOV Related Issues
PXE (FlexBoot) Related Issues
RDMA Related Issues
Debugging Related Issues
OVS Offload Using ASAP2 Direct Related Issues

General Issues
Issue Cause Solution

The system panics when it is
booted with a failed adapter
installed.

Malfunction hardware component Remove the failed adapter.
Reboot the system.

Mellanox adapter is not
identified as a PCI device.

PCI slot or adapter PCI connector
dysfunctionality

Run lspci.
Reseat the adapter in its PCI
slot or insert the adapter to a
different PCI slot.
If the PCI slot confirmed to be
functional, the adapter should
be replaced.

Mellanox adapters are not
installed in the system.

Misidentification of the Mellanox
adapter installed

Run the command below and check
Mellanox’s MAC to identify the
Mellanox adapter installed.

lspci | grep Mellanox' or
'lspci -d 15b3:

Note: Mellanox MACs start with:
00:02:C9:xx:xx:xx, 00:25:8B:xx:xx:xx or
F4:52:14:xx:xx:xx"

The default device may vary
when invoking user apps
(such as ibv_asyncwatch)
which run using a specific
device.

The default device for such apps is the
first device in the device list generated
by libibverbs. This first device in the list
varies, depending on which and how
many InfiniBand devices are installed on
the host, which slot the devices are
installed on, whether they use SR-IOV,
and other factors.

Always specify the desired device
explicitly when running userspace
apps, by using the provided command
line parameter (for example:
ibv_asyncwatch -d <dev>).

mailto:support@mellanox.com

266

•

•

Issue Cause Solution

Insufficient memory to be
used by udev upon OS boot.

udev is designed to fork() new process
for each event it receives so it could
handle many events in parallel, and
each udev instance consumes some
RAM memory.

Limit the udev instances running
simultaneously per boot by adding
udev.children-max=<number> to the
kernel command line in grub.

Operating system running
from root file system located
on a remote storage (over
Mellanox devices), hang
during reboot/shutdown
(errors such as “No such file
or directory” will appear).

The openibd service script is called
using the ‘stop’ option by the operating
system. This option unloads the driver
stack. Therefore, the OS root file system
disappears before the reboot/ shutdown
procedure is completed, leaving the OS
in a hang state.

Disable the openibd ‘stop’ option by
setting 'ALLOW_STOP=no' in /etc/
infiniband/openib.conf configuration
file.

Mellanox adapter warning
print to dmesg:

Detected insufficient
power on the PCIe slot
(xxxW).

Insufficient PCI power. Investigate the cause for lack of PCI
power.

Ethernet Related Issues
Issue Cause Solution

Ethernet interfaces renaming fails
leaving them with names such as
renameXY.

Invalid udev rules. Review the udev rules inside the "/etc/
udev/rules.d/70-persistent-net.rules"
file. Modify the rules such that every rule
is unique to the target interface, by
adding correct unique attribute values to
each interface, such as dev_id, dev_port
and KERNELS or address).

Example of valid udev rules:

SUBSYSTEM=="net", ACTION=="add",
DRIVERS=="?*",

ATTR{dev_id}=="0x0", ATTR{type}
=="1", KERNEL=="eth*",

ATTR{dev_port}=="0", KER-
NELS=="0000:08:00.0", NAME="eth4"
SUBSYSTEM=="net", ACTION=="add",
DRIVERS=="?*",

ATTR{dev_id}=="0x0", ATTR{type}
=="1", KERNEL=="eth*",

ATTR{dev_port}=="1", KER-
NELS=="0000:08:00.0", NAME="eth5"

No link. Misconfiguration of the switch
port or using a cable not
supporting link rate.

Ensure the switch port is not
down
Ensure the switch port rate is
configured to the same rate as the
adapter's port

267

•

•

•

•

1.

2.

Issue Cause Solution

Degraded performance is
measured when having a mixed
rate environment (10GbE, 40GbE
and 56GbE).

Sending traffic from a node
with a higher rate to a node
with lower rate.

Enable Flow Control on both switch ports
and nodes:

On the server side run:
ethtool -A <interface> rx on
tx on
On the switch side run the
following command on the
relevant interface:
send on force and receive on
force

No link with break-out cable. Misuse of the break-out cable
or misconfiguration of the
switch's split ports

Use supported ports on the switch
with proper configuration. For
further information, please refer
to the MLNX_OS User Manual.
Make sure the QSFP breakout
cable side is connected to the
SwitchX.

InfiniBand Related Issues
Issue Cause Solution

The following messages is logged
after loading the driver:

multicast join failed with status - 22

Trying to join a multicast group
that does not exist or exceeding
the number of multicast groups
supported by the SM.

If this message is logged often, check
for the multicast group's join
requirements as the node might not
meet them. Note: If this message is
logged after driver load, it may safely
be ignored.

Unable to stop the driver with the
following on screen message:
ERROR: Module <module> is in
use

An external application is using
the reported module.

Manually unloading the module using
the 'modprobe -r' command.

Logical link fails to come up while
port logi- cal state is Initializing.

The logical port state is in the
Initializing state while pending the
SM for the LID assignment.

Verify an SM is running in the
fabric. Run 'sminfo' from any
host connected to the fabric.
If SM is not running, activate
the SM on a node or on
managed switch.

InfiniBand utilities commands fail
to find devices on the system. For
example, the 'ibv_devinfo'
command fail with the following
output:

Failed to get IB devices list:
Function not implemented

The InfiniBand utilities commands
are invoked when the driver is not
loaded.

Load the driver:

/etc/init.d/openibd start

268

•

•

•

•

•

•

•

•

•

•

1.

2.
3.

4.

5.

Installation Related Issues

Installation Issues

Issue Cause Solution

Driver installation fails. The install script may fail for the
following reasons:

Using an unsupported
installation option
Failed to uninstall the
previous installation due to
dependencies being used
The operating system is not
supported
The kernel is not supported.
You can run
mlnx_add_kernel_sup-
port.sh in order to to
generate a MLNX-OFED
package with drivers for the
kernel
Required packages for
installing the driver are
missing
Missing kernel backport
support for non supported
kernel

Use only supported
installation options. The full
list of installation options
case be displayed on screen
by using: mlnxofedinstall
--h
Run 'rpm -e' to display a list
of all RPMs and then
manually uninstall them if
the preliminary
uninstallation failed due to
dependencies being used.
Use a supported operating
system and kernel
Manually install the missing
packages listed on screen by
the installation script if the
installation failed due to
missing prerequisites.

After driver installation, the
openibd service fail to start. This
message is logged by the driver:
Unknown symbol

The driver was installed on top of an
existing In-box driver.

Uninstall the MLNX_OFED
driver.
ofed_uninstall.sh
Reboot the server.
Search for any remaining
installed driver.
If found, move them to the /
tmp directory from the
current directory.
Re-install the MLNX_OFED
driver.
Restart the openibd service.

Fixing Application Binary Interface (ABI) Incompatibility with
MLNX_OFED Kernel Modules

This section is relevant for RedHat and SLES distributions only.

269

1.

2.
a.

Overview
MLNX_OFED package for RedHat comes with RPMs that support KMP (weak-modules), meaning that
when a new errata kernel is installed, compatibility links will be created under the weak-updates
directory for the new kernel. Those links allow using the existing MLNX_OFED kernel modules without
the need for recompilation. However, at times, the ABI of the new kernel may not be compatible with
the MLNX_OFED modules, which will prevent loading them. In this case, the MLNX_OFED modules
must be rebuilt against the new kernel.

Detecting ABI Incompatibility with MLNX_OFED Modules
When MLNX_OFED modules are not compatible with a new kernel from a new OS or errata kernel, no
links will be created under the weak-updates directory for the new kernel, causing the driver load to
fail. Checking for the existence of needed module links under weak-updates directory can be done by
reloading the MLNX_OFED modules. If one or more modules are missing, the driver reload will fail with
an error message.
Example:

**
/etc/init.d/openibd restart
Unloading HCA driver: [OK]
Loading HCA driver and Access Layer: [OK]
Module rdma_cm belong to kernel which is not a part of MLNX[FAILED]kipping...
Loading rdma_ucm [FAILED]
**

Resolving ABI Incompatibility with MLNX_OFED Modules
In order to fix ABI incompatibility with MLNX_OFED modules, the modules should be recompiled
against the new kernel, using the mlnx_add_kernel_support.sh script, available in MLNX_OFED
installation image.
There are two ways to recompile the MLNX_OFED modules:

Local recompilation and installation on one server.
Run the mlnxofedinstall command to recompile the kernel modules and reinstall the whole
MLNX_OFED on the server. Mount MLNX_OFED ISO image or extract the TGZ file:

cd <MLNX_OFED dir>
./mlnxofedinstall --skip-distro-check --add-kernel-support --kmp --force

Notes:
- The --kmp flag will enable rebuilding RPMs with KMP (weak-updates) support for the new
kernel. Therefore, in the next OS/kernel update, the same modules can be used with the new
kernel (assuming that the ABI compatibility was not broken again).
- The command above will rebuild only the kernel RPMs (using mlnx_add_kernel_support.sh),
and will save the resulting MLNX_OFED package under /tmp and start installing it automatically.
This package can be used for installation on other servers using regular mlnxofedinstall
command or yum.
Preparing a new image on one server and deploying it on the cluster.

Use the mlnx_add_kernel_support.sh script directly only to rebuild the kernel RPMs
(without running any installations) on one server. Mount MLNX_OFED ISO image or
extract the TGZ file:

cd <MLNX_OFED dir>
./mlnx_add_kernel_support.sh -m $PWD --kmp -y

270

b.

Note: This command will save the resulting MLNX_OFED package under /tmp.
Example:

cd /tmp/MLNX_OFED_LINUX-3.3-1.0.0.0-DB-rhel7.0-x86_64
./mlnx_add_kernel_support.sh -m $PWD --kmp -y
Note: This program will create MLNX_OFED_LINUX TGZ for rhel7.1
 under /tmp directory.
See log file /tmp/mlnx_ofed_iso.23852.log

Building OFED RPMS . Please wait...
Creating metadata-rpms for 3.10.0-229.14.1.el7.x86_64 ...
WARNING: Please note that this MLNX_OFED repository contains an
unsigned rpms,
WARNING: therefore, you should set 'gpgcheck=0' in the repo conf
file.
Created /tmp/MLNX_OFED_LINUX-3.3-1.0.0.0-rhel7.1-x86_64-ext.tgz

Install the newly created MLNX_OFED package on the cluster:
Option 1: Copy the package to the servers and install it using the mlnxofedinstall
script.
Option 2: Deploy the MLNX_OFED package using YUM (for YUM installation instructions,
refer to Installing MLNX_OFED Using YUM section):
 i. Extract the resulting MLNX_OFED image and copy it to a shared NFS location.
 ii. Create a YUM repository configuration.
 iii. Install the new MLNX_OFED kernel RPMs on the servers: # yum update
 Example:

...
...
===
===
Package Arch Version
Repository Size
===
===
Updating:
epel-release noarch 7-7
epel 14 k
kmod-iser x86_64 1.8.0-OFED.3.3.1.0.0.1.gf583963.
201606210906.rhel7u1 mlnx_ofed 35 k
kmod-isert x86_64 1.0-OFED.3.3.1.0.0.1.gf583963.
201606210906.rhel7u1 mlnx_ofed 32 k
kmod-kernel-mft-mlnx x86_64 4.4.0-1.201606210906.rhel7u1
mlnx_ofed 10 k
kmod-knem-mlnx x86_64 1.1.2.90mlnx1-OFED.3.3.0.0.1.0.3.1.
ga04469b.201606210906.rhel7u1 mlnx_ofed 22 k
kmod-mlnx-ofa_kernel x86_64 3.3-OFED.3.3.1.0.0.1.gf583963.
201606210906.rhel7u1 mlnx_ofed 1.4 M
kmod-srp x86_64 1.6.0-OFED.3.3.1.0.0.1.gf583963.
201606210906.rhel7u1 mlnx_ofed 39 k

Transaction Summary
===
===
Upgrade 7 Packages
...
...

271

c.

1.

2.

3.

1.

2.

Note: The MLNX_OFED user-space packages will not change; only the kernel RPMs will
be updated. However, “YUM update” can also update other inbox packages (not related to
OFED). In order to install the MLNX_OFED kernel RPMs only, make sure to run:

yum install mlnx-ofed-kernel-only

Note: mlnx-ofed-kernel-only is a metadata RPM that requires the MLNX_OFED kernel
RPMs only.
Verify that the driver can be reloaded:

 # /etc/init.d/openibd restart

Performance Related Issues
Issue Cause Solution

The driver works but the transmit and/
or receive data rates are not optimal.

 - These recommendations may assist
with gaining immediate improvement:

Confirm PCI link negotiated
uses its maximum capability
Stop the IRQ Balancer
service:
/etc/init.d/irq_balancer
stop
Start mlnx_affinity service:
mlnx_affinity start

For best performance practices,
please refer to the "Performance
Tuning Guide for Mellanox Network
Adapters".

Out of the box throughput performance
in Ubuntu14.04 is not optimal and may
achieve results below the line rate in
40GE link speed.

IRQ affinity is not set properly
by the irq_balancer

For additional performance tuning,
please refer to Performance Tuning
Guide.

SR-IOV Related Issues
Issue Cause Solution

When assigning a VF to a VM the following
message is reported on the screen:

PCI-assgine: error: requires KVM
support

SR-IOV and virtualization
are not enabled in the
BIOS.

Verify they are both enabled in
the BIOS
Add to the GRUB configuration
file to the following kernel
parameter:
"intel_immun=on" (see “Settin
g Up SR-IOV” section).

272

1.

2.

1.

2.

PXE (FlexBoot) Related Issues
Issue Cause Solution

PXE boot timeout. The 'always-broadcast' option is
disabled.

Enable 'always-broadcast on'.

For the complete procedure, please refer
to Linux PXE User Guide.

PXE InfiniBand link fails
with the following
messages although the
DHCP request was sent:
Initializing and The socket
is not connected.

Either the SM is not running in the
fabric or the SM default multicast
group was created with non-default
settings.

Activate the SM on a node or on
managed switch.
Check in the SM partitions.conf
file that the default partition rate
and MTU setting are SDR and 2K,
respectively.
The PXE is establishing by default
an SDR link set with an MTU of 2K.
If the default multicast group
opened with different rate and/or
MTU, the SM will deny the PXE
request to join.

Mellanox adapter is not
identified as a boot device.

The expansion ROM image is not
installed on the adapter. or the
server's BIOS is not configured to
work on Legacy mode

Run a flint query to display the
expansion ROM information.
For example: "flint -d /dev/mst/
mt4099_pci_cr0 q" and look for
the "Rom info:" line.
For further information on how to
burn the ROM, please refer to MFT
User Manual.
Make sure the BIOS is configured
to work in Legacy mode if the
adapter's firmware does not
include a UEFI image.

RDMA Related Issues
Issue Cause Solution

Infiniband-diags tests, such as
'ib_write_bw', fail between systems
with different driver releases.

When running a test between 2
systems in the fabric with different
Infiniband-diags packages installed.

Run the test using the same
perftest RPM on both systems.

http://www.mellanox.com/related-docs/prod_software/Mellanox_PXE_User_Guide.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_PXE_User_Guide.pdf

273

•

•

•

•

•

•
•

Debugging Related Issues
Issue Cause Solution

False positive errors when
running applications with
valgrind.

Default MLNX_OFED libraries
are compiled with- out valgrind
support and several resources
are managed by the kernel.

Libraries' files compiled with valgrind support
are installed under "/usr/ lib64/mlnx_ofed/
valgrind/"

 To run an application over these
libraries, thus prevent false positive
errors:
env LD_LIBRARY_PATH=/usr/
lib64/mlnx_ofed/valgrind/ val-
grind [valgrind options]
<application cmd>
To suppress most of valgrind's false
positive errors, generate the
suppression file:
#./generate_mlnx_ofed_- supp.sh
> mlnx.supp

OVS Offload Using ASAP2 Direct Related Issues
Issue Cause Solution(s)

Traffic is not offloaded OVS uses TC flower classifier to add
offloading rules to both the software and
the hardware.

TC flower classifier fails to add a
rule.
A rule was added to the TC
flower classifier but failed to be
added to the firmware.

Check for system error in
dmesg or the system logging
facility like journalctl
Check OVS logs for errors
Dump the rules using the TC
command line
For example: Dump rules on a
specific interface
tc filter show dev
ens4f0 parent ffff:

274

Common Abbreviations and Related
Documents
Common Abbreviations and Acronyms

Abbreviation/Acronym Description

B (Capital) ‘B’ is used to indicate size in bytes or multiples of bytes (e.g.,
1KB = 1024 bytes, and 1MB = 1048576 bytes)

b (Small) ‘b’ is used to indicate size in bits or multiples of bits (e.g., 1Kb =
1024 bits)

FW Firmware

HCA Host Channel Adapter

HW Hardware

IB InfiniBand

iSER iSCSI RDMA Protocol

LSB Least significant byte

lsb Least significant bit

MSB Most significant byte

msb Most significant bit

NIC Network Interface Card

SW Software

VPI Virtual Protocol Interconnect

IPoIB IP over InfiniBand

PFC Priority Flow Control

PR Path Record

RoCE RDMA over Converged Ethernet

SL Service Level

SRP SCSI RDMA Protocol

MPI Message Passing Interface

QoS Quality of Service

ULP Upper Layer Protocol

275

Abbreviation/Acronym Description

VL Virtual Lane

vHBA Virtual SCSI Host Bus Adapter

uDAPL User Direct Access Programming Library

Glossary
The following is a list of concepts and terms related to InfiniBand in general and to Subnet Managers in
particular. It is included here for ease of reference, but the main reference remains the InfiniBand
Architecture Specification.

Term Description

Channel Adapter (CA),
Host Channel Adapter
(HCA)

An IB device that terminates an IB link and executes transport functions. This may
be an HCA (Host CA) or a TCA (Target CA)

HCA Card A network adapter card based on an InfiniBand channel adapter device

IB Devices An integrated circuit implementing InfiniBand compliant communication

IB Cluster/Fabric/ Subnet A set of IB devices connected by IB cables

In-Band A term assigned to administration activities traversing the IB connectivity only

Local Identifier (ID) An address assigned to a port (data sink or source point) by the Subnet Manager,
unique within the subnet, used for directing packets within the subnet

Local Device/Node/
System

The IB Host Channel Adapter (HCA) Card installed on the machine running IBDIAG
tools

Local Port The IB port of the HCA through which IBDIAG tools connect to the IB fabric

Master Subnet Manager The Subnet Manager that is authoritative, that has the reference configuration
information for the subnet

Multicast Forwarding
Tables

A table that exists in every switch providing the list of ports to forward received
multicast packet. The table is organized by MLID

Network Interface Card
(NIC)

A network adapter card that plugs into the PCI Express slot and provides one or
more ports to an Ethernet network

Standby Subnet Manager A Subnet Manager that is currently quiescent, and not in the role of a Master Subnet
Manager, by the agency of the master SM

Subnet Administrator
(SA)

An application (normally part of the Subnet Manager) that implements the interface
for querying and manipulating subnet management data

Subnet Manager (SM) One of several entities involved in the configuration and control of the IB fabric

Unicast Linear
Forwarding Tables (LFT)

A table that exists in every switch providing the port through which packets should
be sent to each LID

276

Term Description

Virtual Protocol
Interconnect (VPI)

A Mellanox Technologies technology that allows Mellanox channel adapter devices
(ConnectX®) to simultaneously connect to an InfiniBand subnet and a 10GigE subnet
(each subnet connects to one of the adapter ports)

Related Documentation

Document Name Description

InfiniBand Architecture Specification, Vol. 1,
Release 1.2.1

The InfiniBand Architecture Specification that is provided
by IBTA

IEEE Std 802.3ae™-2002

(Amendment to IEEE Std 802.3-2002) Document #
PDF: SS94996

Part 3: Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and Physical Layer
Specifications

Amendment: Media Access Control (MAC) Parameters,
Physical Layers, and Management Parameters for 10 Gb/s
Operation

Firmware Release Notes for Mellanox adapter
devices

See the Release Notes PDF file relevant to your adapter
device on mellanox.com

MFT User Manual and Release Notes Mellanox Firmware Tools (MFT) User Manual and Release
Notes documents

WinOF User Manual Mellanox WinOF User Manual describes the installation,
configuration, and operation of Mellanox Windows driver

VMA User Manual Mellanox VMA User Manual describes the installation,
configuration, and operation of Mellanox VMA driver

http://mellanox.com/

277

•
•
•

•

•
•
•

•

•

•
•

•
•
•

•
•
•
•
•

•

•

•
•

User Manual Revision History
Re
lea
se

Date Description

5.1 July 28, 2020 Updated the content of the entire document following the removal of support for
ConnectX-3, ConnectX-3 Pro and Connect-IB adapter cards, as well as the
deprecation of RDMA experimental verbs library (mlnx_lib).

Added SR-IOV Live Migration section.

Added SR-IOV VF LAG section.

5.0-
2

April 23, 2020 Added Interrupt Request (IRQ) Naming section.

April 6, 2020 Added Kernel Transport Layer Security (kTLS) Offloads section.

5.0 March 3, 2020 Added IPSec Crypto Offload section.
Added OVS-DPDK Hardware Offloads section.
Updated OVS Hardware Offloads Configuration section.

4.7 December 29, 2019 Added Configuring Uplink Representor Mode section.

December 13, 2019 Added Performance Tuning Based on Traffic Patterns section.
Added "num_of_groups" entry to table mlx5_core Module Parameters.
Added Mediated Devices section.

September 29, 2019 Updated Additional Installation Procedures section.

4.6 May 13, 2019 ethtool section updates: Added description of -f flashing option to Ethtool
Supported Options table.

April 30, 2019 ethtool section updates:
Updated the description of ethtool -s eth<x> advertise <N> autoneg
on counter under Ethtool.
Added the following counters under Ethtool:

ethtool --show-fec eth<x>
ethtool --set-fec eth<x> encoding auto|off|rs|baser

Added Devlink Parameters section.
Added Limit Bandwidth per Group of VFs section.
Added Disabling RoCE section.
Added RDMA-CM QP Timeout Control section.
Added RDMA-CM Application Managed QP section.

4.5 December 19, 2018 Reorganized Chapter 2, “Installation”: Consolidated the separate
installation procedures under Installing Mellanox OFED and Additional
Installation Procedures
Added Installing NEO-Host Using mlnxofedinstall Script

November 29, 2018 Added the following sections:

Local Loopback Disable
Offsweep Balancing

278

•
•

Release Notes Change Log History
Category Description

Unable to render include or excerpt-include. Could not retrieve page.

Adapters: ConnectX-5 and above

Kernel Software
Managed Flow
Steering (SMFS)
Performance

Improved the performance of Kernel software steering by reducing its memory
consumption.

Adapters: All

NEO-Host SDK Added support for NEO-Host SDK installation on MLNX_OFED.

Bug Fixes See Bug Fixes.

Unable to render include or excerpt-include. Could not retrieve page.

Adapters: ConnectX-6 Dx

Adapters Added support for ConnectX-6 Dx adapter cards.

Userspace Software
Steering
ConnectX-6 Dx
Support

[Beta] Added support for software steering on ConnectX-6 Dx adapter cards in the user-
space RDMA-Core library through the mlx5dv_dr API.

Adapters: ConnectX-6 Dx and above

Virtual Output
Queuing (VoQ)
Counters

Exposed rx_prio[p]_buf_discard, rx_prio[p]_wred_discard and rx_prio[p]_marked
firmware counters that count the number of packets that were dropped due to
insufficient resources.

IPsec Crypto
Offloads

[Beta] IPsec crypto offloads are now supported on ConnectX-6 Dx devices and up. The
offload functions use the existing ip xfrm tool to activate offloads on the device. It
supports transport/tunnel mode with AES-GCM IPsec scheme.

TLS TX Hardware
Offload

[Alpha] Added support for hardware offload encryption of TLS traffic.

VirtIO Acceleration
through Datapath I/
O Processor (vDPA)

Added support to enable mapping the VirtIO access region (VAR) to be used for doorbells
by vDPA applications. Specifically, the following DV APIs were introduced (see man page
for more details):

mlx5dv_alloc_var()
mlx5dv_free_var()

Adapters: ConnectX-5 and above

Resource Allocation
on External Memory

Added support to enable overriding mlx5 internal allocations in order to let applications
allocate some resources on external memory, such as that of the GPU.

The above is achieved by extending the parent domain object with custom allocation
callbacks. Currently supported verbs objects are: QP, DBR, RWQ, SRQ.

279

1.
2.

3.

Hardware Clock
Exposure

Added support for querying the adapter clock via mlx5dv_query_device.

ODP Diagnostic
Counters

Added ODP diagnostics counters for the following items per MR (memory region) within
IB/mlx5 driver:

Page faults: Total number of faulted pages.
Page invalidations: Total number of pages invalidated by the OS during all
invalidation events. The translations can no longer be valid due to either non-
present pages or mapping changes.
Prefetched pages: When prefetching a page, a page fault is generated in order to
bring the page to the main memory.

Devlink Health CR-
Space Dump

Added the option to dump configuration space via the devlink tool in order to improve
debug capabilities.

Multi-packet TX
WQE Support for
XDP Transmit Flows

The conventional TX descriptor (WQE or Work Queue Element) describes a single packet
for transmission. Added driver support for the HW feature of multi-packet TX WQEs in
XDP transmit flows. With this, the HW becomes capable of working with a new and
improved WQE layout that describes several packets. In effect, this feature saves PCI
bandwidth and transactions, and improves transmit packet rate.

OVS-Kernel ToS
Rewrite

Added support for Type of Service (ToS) rewrite in the OVS-Kernel.

OVS-Kernel
Mirroring

Added support for mirroring output in SwitchDev mode in the OVS-Kernel. The mirroring
port may either be a local or a remote VF, using VxLAN or GRE encapsulations.

GENEVE Encap/
Decap Rules Offload

Added support for GENEVE encapsulation/decapsulation rules offload.

GPRS Tunneling
Protocol (GTP)
Header

[Beta] Added support for matching (filtering) GTP header-based packets using mlx5dv_dr
API over user-space RDMA-Core library.

Multi Packet Tx
WQE Support for
XDP Transmit Flows

Added driver support for the hardware feature of multi-packet Tx to work with a new and
improved WQE layout that describes several packets instead of a single packet for XDP
transmission flows. This saves PCI bandwidth and transactions, and improves transmit
packet rate.

Userspace Software
Steering Debugging
API

[Beta] Added support for software steering to dump flows for debugging purposes in the
user-space RDMA-Core library through the mlx5dv_dr API.

Kernel Software
Steering for
Connection Tracking
(CT)

[Beta] Added support for updating CT rules using the software steering mechanism.

Kernel Software
Steering Remote
Mirroring

[Beta] Added support for updating remote mirroring rules using the software steering
mechanism.

Adapters: ConnectX-5 and BlueField

OVS-DPDK Support Added OVS-DPDK component as part of the MLNX_OFED package with hardware offload
capabilities.

OVS-DPDK
Connection Tracking

[Beta] Added support for OvS-DPDK Connection Tracking hardware offload.

OVS-DPDK VirtIO
Acceleration
through VF Relay

Added support for OVS-DPDK VirtIO Acceleration through VF Relay (also known as
Software vDPA) forwarding of traffic from VF to Virtio VM and vice-versa.

280

•

•

•
•

•

OVS-DPDK VXLAN
Encap/Decap

Added support for OVS-DPDK VXLAN encapsulation and decapsulation hardware offload.

Adapters: ConnectX-4 and above

Discard Counters Exposed rx_prio[p]_discards discard counters per priority that count the number of
received packets dropped due to lack of buffers on the physical port.

MPLS Traffic Added support for reporting TSO and CSUM offload capabilities for MPLS tagged traffic
and, allowed the kernel stack to use these offloads.

mlx5e Max
Combined Channels

Increased the driver’s maximal combined channels value from 64 to 128 (however, note
that OOB value will not cross 64).
128 is the upper bound. Lower maximal value can be seen on the host, depending on the
number of cores and MSIX's configured by the firmware.

RoCE Accelerator
Counters

Added the following RoCE accelerator counters:

roce_adp_retrans - counts the number of adaptive retransmissions for RoCE
traffic
roce_adp_retrans_to - counts the number of times RoCE traffic reached timeout
due to adaptive retransmission
roce_slow_restart - counts the number of times RoCE slow restart was used
roce_slow_restart_cnps - counts the number of times RoCE slow restart
generated CNP packets
roce_slow_restart_trans - counts the number of times RoCE slow restart
changed state to slow restart

All Adapters

Migration to RDMA-
Core

The default installation of the userspace is now the RDMA-Core library instead of the
legacy verbs. This achieves most of the legacy experimental verbs’ functionalities, and
more.

For Mellanox VMA or Mellanox RiverMax, use experimental verbs (prefix “ibv_exp”).

For further information on the migration to RDMA-Core and the list of new APIs used for
various MLNX_OFED features, please refer to the Migration to RDMA-Core document.

ibdev2netdev Tool
Output

ibdev2netdev tool output was changed such that the bonding device now points at the
bond instead of the slave interface.

Memory Region Added support for the user to register memory regions with a relaxed ordering access
flag. This can enhance performance, depending on architecture and scenario.

Devlink Health
Reporters

Added support for monitoring and recovering from errors that occur on the RX queue,
such as cookie errors and timeout.

GSO Optimization Improved GSO (Generic Segmentation Offload) workload performance by decreasing
doorbells usage to the minimum required.

TX CQE
Compression

Added support for TX CQE (Completion Queue Element) compression. Saves on outgoing
PCIe bandwidth by compressing CQEs together. Disabled by default. Configurable via
private flags of ethtool.

Firmware Versions
Query via Devlink

Added the option to query for running and stored firmware versions using the devlink
tool.

Firmware Flash
Update via Devlink

Added the option to update the firmware image in the flash using the devlink tool.

Usage: devlink dev flash <dev> file <file_name>.mfa2

For further information on how to perform this update, see "Updating Firmware Using
ethtool/devlink and .mfa2 File" section in MFT User Manual.

https://docs.mellanox.com/display/rdmacore50

281

Devlink Health WQE
Dump

Added support for WQE (Work Queue Element) dump, triggered by an error on Rx/Tx
reporters. In addition, some dumps (not triggered by an error) can be retrieved by the
user via devlink health reporters.

GENEVE Tunnel
Stateless Offload

Added support for GENEVE tunneled hardware offloads of TSO, CSUM and RSS.

TCP Segmentation
and Checksum
Offload

Added TCP segmentation and checksum offload support for MPLS-tagged traffic.

4.7-3.2.9.0

HCAs: ConnectX-5 and above

Uplink Representor
Modes

Added support for new_netdev and nic_netdev uplink representor modes.

For further information on how to configure these modes, please refer to Configuring
Uplink Representor Mode.

mlx5_core Added new mlx5_core module parameter "num_of_groups", which controls the number
of large groups in the FDB flow table.

Note: The default value of num_of_groups may change per MLNX_OFED driver version.
The following table lists the values that must be set when upgrading the MLNX_OFED
version prior to driver load, in order to achieve the same OOB experience.

MLNX_OFED Version num_of_groups Default Value

v4.7-3.2.9.0 4

v4.6-3.1.9.0.14 15

v4.6-3.1.9.0.15 15

v4.5-1.0.1.0.19 63

For further information, please refer to Performance Tuning Based on Traffic Patterns
section in MLNX_OFED User Manual.

ConnectX-5

VFs Groups
Minimum
Bandwidth Rate

Added support for setting a minimum bandwidth rate on a group of VFs (BW guarantee) to
ensure this group is able to transmit at least the amount of bandwidth specified on the
wire.

Direct Verbs
Support for Batch
Counters on Root
Table

Added support for mlx5dv_dr API to set batch counters for root tables.

ConnectX-5 & BlueField

Modify Header Added support for mlx5dv_dr_actions to support up to 32 modify actions.

mlx5dv_dr Memory
Consumption

Reduced the mlx5dv_dr API memory consumption by improving the memory allocator.

mlx5dv_dr Memory
Allocation

Reduced memory allocation time when using the mlx5dv_dr API. This is particularly
significant for the first inserted rules on which memory is allocated.

BlueField

282

•

•

•
•
•
•
•
•

Mediated Devices Added support for mediated devices that allows the creation of accelerated devices
without SR-IOV on the Bluefield® system.

For further information on mediated devices and how to configure them, please refer to
Mediated Devices section in MLNX_OFED User Manual.

4.7-1.0.0.1

HCAs: ConnectX-4 and above

Counters Monitoring Added support for monitoring selected counters and generating a notification event
(Monitor_Counter_Change event) upon changes made to these counters.
The counters to be monitored are selected using the SET_MONITOR_COUNTER
command.

Signature Offload
Kernel Verbs
Enhancements

Added a new API which enables posting a single WR that completes the Protection
Information (PI) operation internally. This reduces CPU utilization for posting and
processing multiple WRs and improves performance by choosing the optimal mkey for
the hardware according to the buffer memory layout.

EEPROM Device
Thresholds via
Ethtool

Added support to read additional EEPROM information from high pages of modules such
as SFF-8436 and SFF-8636. Such information can be: 1. Application Select table 2. User
writable EEPROM 3. Thresholds and alarms - Ethtool dump works on active cables only
(e.g. optic), but thresholds and alarms can be read with “offset” and “length” parameters
in any cable by running: ethtool -m <DEVNAME> offset X length Y

Performance
Improvements

Updated Blueflame capability reporting to prevent redundant use of Blueflame
when Write-combining is not supported.
Added Blueflame capabilities over VFs.

RDMA_RX RoCE
Steering Support

Added the ability to create rules to steer RDMA traffic, with two destinations supported:
DevX object and QP. Multiple priorities are also supported.

SRQ and XRC
Support on On
Demand Paging
(ODP) Memory
Region (MR)

Added support for using ODP MR with SRQ WQEs and XRC transport.

Indirect Mkey ODP Added the ability to create indirect Mkeys with ODP support over DevX interface.

DevX Asynchronous
Query Commands

Added support for running QUERY commands over the DevX interface in an asynchronous
mode. This enables applications to issue many commands in parallel while firmware
processes the commands.

Implicit ODP Added support for reporting implicit ODP support to user applications in order to allow
better granularity over ODP creation.

Devlink Health
Utility

Added support for real-time alerting of functionality issues that may be found in a system
component (reporter). This utility helps detect and recover from a problem with a PCI
device. It provides a centralize status of drivers' health activities in the generic Devlink
instance and inter alia, supports the following:

Storing real-time error dumps
Performing automatic (configurable) real-time reporter recovery
Performing real-time reporter diagnosis
Indicating real-time reporter's health status
Providing admins with the ability to dump, diagnose and recover a reporter
Providing admins with the ability to configure a reporter

User-Mode Memory
Registration (UMR)

Enabled registration of memory patterns that can be used for future RDMA operations.

GENEVE Tunnel
Stateless Offload

Added support for Generic Network Virtualization Encapsulation (GENEVE) tunneled
hardware offload of TSO, CSUM and RSS.

283

ODP Pre-fetch Added support for pre-fetching a range of an on-demand paging (ODP) memory region
(MR), this way reducing latency by making pages present with RO/RW permissions before
the actual IO is conducted.

Fragmented
QPs Buffer

Added the ability to allocate a fragmented buffer to in-kernel QP creation requests, in
cases of large QP size requests that used to fail due to low memory resources on the
host.

Flow Counters
Batch Query

Allowed flow counters created with the DevX interface to be attached to flows created
with the raw flow creation API.

DevX Privilege
Enforcement

Enforced DevX privilege by firmware. This enables future device functionality without the
need to make driver changes unless a new privilege type is introduced.

DevX
Interoperability APIs

Added support for modifying and/or querying for a verb object (including CQ, QP, SRQ,
WQ, and IND_TBL APIs) via the DevX interface.

This enables interoperability between verbs and DevX.

Counters Monitoring Added support for monitoring selected counters and generating a notification event
(Monitor_Counter_Change event) upon changes made to these counters.

The counters to be monitored are selected using the SET_MONITOR_COUNTER
command.

Rx Hash Fields
Configuration

Added the ability to configure Rx hash fields used for traffic spreading into Rx queues
using ETHTOOL_SRXFH and ETHTOOL_GRXFH ethtool commands. Built-in Receive Side
Scaling (RSS) profiles can now be changed on the following traffic types: UDP4, UDP6,
TCP4 and TCP6. This configuration affects both outer and inner headers.

HCAs: ConnectX-4 Lx and above

Equal Cost Multi-
Path (ECMP)

Added support for offloading ECMP rules by tracking software multipath route and
related next-hops, and reflecting this as port affinity to the hardware.

VF LAG Added support for High Availability and load balancing for Virtual Functions of different
physical ports in SwitchDev SR-IOV mode.

Uplink
Representors

Exposed PF (uplink) representors in SwitchDev mode, similarly to VF representors, as an
infrastructure improvement for SmartNICs.

HCAs: ConnectX-5

Userspace Software
Steering for eSwitch

Added software steering capabilities to the SR-IOV eSwitch. Software steering enables
better rules insertion rate compared to the current firmware-based solution. This is
achieved by performing calculations on the main CPU which allows for higher insertion
rates.

Userspace Software
Steering for NICs

Added software steering capabilities to NIC Rx/Tx. Software steering enables better rules
insertion rate compared to the current firmware-based solution. This is achieved by
performing calculations on the main CPU which allows for higher insertion rates. This
solution was designed to work with Virtio DPDK.

Note: Support will be enabled by default once the support for GID change is added.

HCAs: ConnectX-5 and above

ASAP2 Incorporated the documentation of Accelerated Switching And Packet Processing
(ASAP2): Hardware Offloading for vSwitches into MLNX_OFED Release Notes and User
Manual.

284

•
•

QP Counters and
Firmware Errors
per PID

QP counters and flow counters are now set per Process ID (PID) to allow better visibility
of RDMA error states. Users will be able to manually tune the Q counter to monitor
specific QPs, or automatically monitor QPs according to predefined criteria, such as the
QP type.

ODP over DC Added support for On-Demand Paging (ODP) over DC transport.

Address Translation
Services

Added support for Address Translation Services (ATS) feature, which improves
performance for virtualized PeerDirect applications by caching PA-> MA translations and
preventing PCI transactions from going to the root complex.

XDP Inline
Transmission of
Small Packets

Added support for when forwarding packets with XDP, a packet smaller than 256 bytes
would be sent inline within its WQE Tx descriptor for better performance. The number of
packets that are transmitted inline depends on CPUs load, where lower load leads to a
higher number of inline transmission.

VLAN Rewrite Added support for offloading VLAN ID modify operation, allowing the user to replace the
VLAN tag of the incoming frame with a user-specified VLAN tag value.

CQE Padding Added support for padding 64B CQEs to 128B cache lines to improve performance on
128B cache line systems, such as PPC.

XDP Multi-Packet Tx
Work Queue
Element (WQE)

Added support for Multi-Packet Tx WQEs in XDP transmit flows to work with a new and
improved WQE layout that describes several packets.This saves PCI bandwidth and
transactions, and improves transmit packet rate.

HCAs: ConnectX-6

ConnectX Device IDs Added support for the following new device IDs:

ConnectX-6 Dx (PF)
ConnectX Family mlx5Gen Virtual Function (VF)
Note that every new device (adapter) VF will be identified with this device ID.
Different VF models will be distinguished by their revision ID.

HCAs: ConnectX-6 and above

Ethtool 200Gbps ConnectX-6 hardware introduces support for 200Gbps and 50Gbps-per-lane link mode.
The driver supports full backward compatibility with previous configurations. Note that in
order to advertise newly added link-modes, the full bitmap related to the link modes
must be advertised from ethtool man page.

NOTE: This feature is firmware-dependent. Currently, ConnectX-6 Ethernet firmware
supports up to 100Gbps only. Thus, this capability may not function properly using the
current driver and firmware versions.

HDR Link Speed
Exposure

Added support for HDR link speed in CapabilityMask2 field in port attributes.

QP Packet Based
Credit Mode

Added support for an alternative end-to-end credit mode for QP creation. Credits
transported from the responder to the requester are now issued per packet. This is
particularly useful for sending large RDMA messages from HCA to switches that are
short in memory.

HCAs: BlueField

Device Emulation
Infrastructure

Added support for Device Emulation in BlueField. This mechanism allows function-A to
perform operations on behalf of function-B. The emulation manager creates a channel
(named VHCA_TUNNEL general object) that acts as the direct command interface
between the emulated function host and the HCA hardware. The emulation software
creates this tunnel for every managed function and issues commands via the DevX
general command interface.

285

HCAs: All

Verbs Migration to
RDMA-Core

Legacy verbs remain the default userspace installation option in the
MLNX_OFED. However, as of MLNX_OFED v4.7, you can opt to install full RDMA-Core
based userspace by adding the
--upstream-libs flag to the mlnxofedinstall script.

MLNX_OFED
Installation via
Repository

The repository providing legacy verbs has been moved from RPMS or DEBS folders to
RPMS/MLNX_LIBS and DEBS/MLNX_LIBS.

In addition, a new repository providing RDMA-Core based userspace has been added to
RPMS/UPSTREAM_LIBS and DEBS/UPSTREAM_LIBS.

NFSoRDMA Added support for NFS over RDMA (NFSoRDMA) module over the OSs listed in
NFSoRDMA Supported OSs section.

As of MLNX_OFED v4.7, NFSoRDMA driver is no longer installed by default. In order to
install it over a supported kernel, add the “--with-nfsrdma” installation option to the
“mlnxofedinstall” script.

RDMA-CM QP
Timeout Control

Added a new option to rdma_set_option that allows applications to override the RDMA-
CM's QP ACK timeout value.

Object IDs
Exportation

Added a unique ID for each verbs object to allow direct query over rdma-tool and rdma-
netlink for enhanced debuggability.

RDMA-CM
Application
Managed QP

Added support for the RDMA application to manage its own QPs and use RDMA-CM only
for exchanging Address information.

Bug Fixes See “Bug Fixes" section.

4.6-1.0.1.0

HCAs: ConnectX-3/ConnectX-3 Pro

Devlink
Configuration
Parameters Tool

Added support for a set of configuration parameters that can be changed by the user
through the Devlink user interface.

HCAs: ConnectX-4 and above

ODP Pre-fetch Added support for pre-fetching a range of an on-demand paging (ODP) memory region
(MR), this way reducing latency by making pages present with RO/RW permissions before
the actual IO is conducted.

DevX Privilege
Enforcement

Enforced DevX privilege by firmware. This enables future device functionality without the
need to make driver changes unless a new privilege type is introduced.

DevX
Interoperability APIs

Added support for modifying and/or querying for a verb object (including CQ, QP, SRQ,
WQ, and IND_TBL APIs) via the DevX interface.

This enables interoperability between verbs and DevX.

DevX Asynchronous
Query Commands

Added support for running QUERY commands over the DevX interface in an asynchronous
mode. This enables applications to issue many commands in parallel while firmware
processes the commands.

286

DevX User-space
PRM Handles
Exposure

Exposed all PRM handles to user-space so DevX user application can mix verbs objects
with DevX objects.

For example: Take the cqn from the created ibv_cq and use it on a devx)create(QP).

Indirect Mkey ODP Added the ability to create indirect Mkeys with ODP support over DevX interface.

XDP Redirect Added support for XDP_REDIRECT feature for both ingress and egress sides. Using this
feature, incoming packets on one interface can be redirected very quickly into the
transmission queue of another capable interface. Typically used for load balancing.

RoCE Disablement Added the option to disable RoCE traffic handling. This enables forwarding of traffic over
UDP port 4791 that is handled as RoCE traffic when RoCE is enabled.

When RoCE is disabled, there is no GID table, only Raw Ethernet QP type is supported and
RoCE traffic is handled as regular Ethernet traffic.

Forward Error
Correction (FEC)
Encoding

Added the ability to query and modify Forward Error Correction (FEC) encoding, as well
as disabling it via Ethtool.

RAW Per-Lane
Counters Exposure

Exposed RAW error counters per cable-module lane via ethtool stats. The counters show
the number of errors before FEC correction (if enabled).

For further information, please see phy_raw_errors_lane[i] under Physical Port
Counters section in Understanding mlx5 ethtool Counters Community post.

HCAs: ConnectX-4 Lx and above

VF LAG Added support for High Availability and load balancing for Virtual Functions of different
physical ports in SwitchDev SR-IOV mode.

HCAs: ConnectX-5 and above

ASAP2 Offloading
VXLAN
Decapsulation with
HW LRO

Added support for performing hardware Large Receive Offload (HW LRO) on VFs with
HW-decapsulated VXLAN.
For further information on the VXLAN decapsulation feature, please refer to ASAP2 User
Manual under www.mellanox.com -> Products -> Software -> ASAP2.

PCI Atomic
Operations

Added the ability to run atomic operations on local memory without involving verbs API or
compromising the operation's atomicity.

Equal-Cost Multi-
Path (ECMP)
Routing Offloading

Enabled Equal-Cost Multi-Path (ECMP) Routing offloading.
Equal-Cost Multi-Path (ECMP) is a forwarding mechanism for routing packets along
multiple paths of equal cost with the goal to achieve almost equally distributed link load
sharing.

VXLAN over VLAN VXLAN over VLAN enables the user to use VXLAN offloads' benefit to offload VLAN tagged
tunnels thus boost system's performance.

VLAN Rewrite Rewriting VLAN tags allows the user to replace the VLAN tag of the incoming frame with
a user-specified VLAN tag value.

HCAs: ConnectX-5

Virtual Ethernet
Port Aggregator
(VEPA)

Added support for activating/deactivating Virtual Ethernet Port Aggregator (VEPA) mode
on a single virtual function (VF). To turn on VEPA on the second VF, run:
echo ON > /sys/class/net/enp59s0/device/sriov/1/vepa

https://community.mellanox.com/s/article/understanding-mlx5-ethtool-counters
http://www.mellanox.com/

287

1.
2.
3.

•
•
•

VFs Rate Limit Added support for setting a rate limit on groups of Virtual Functions rather on an
individual Virtual Function.

HCAs: ConnectX-6

ConnectX-6 Support [Beta] Added support for ConnectX-6 (VPI only) adapter cards.

NOTE: In HDR installations that are built with remotely managed Quantum-based
switches, the switch’s firmware must be upgraded to version 27.2000.1142 prior to
upgrading the HCA’s (ConnectX-6) firmware to version 20.25.1500. When using
ConnectX-6 HCAs with firmware v20.25.1500 and connecting them to Quantum-based
switches, make sure the Quantum firmware version is 27.2000.1142 in order to avoid any
critical link issues.

Ethtool 200Gbps ConnectX-6 hardware introduces support for 200Gbps and 50Gbps-per-lane link mode.
MLNX_OFED supports full backward compatibility with previous configurations.

Note that in order to advertise newly added link-modes, the full bitmap related to the link
modes must be advertised from ethtool man page. For the full bitmap list per link mode,
please refer to MLNX_OFED User Manual.

NOTE: This feature is firmware-dependent. Currently, ConnectX-6 Ethernet firmware
supports up to 100Gbps only. Thus, this capability may not function properly using the
current driver and firmware versions.

PCIe Power State Added support for the following PCIe power state indications to be printed to dmesg:

Info message #1: PCIe slot power capability was not advertised.
Warning message: Detected insufficient power on the PCIe slot (xxxW).
Info message #2: PCIe slot advertised sufficient power (xxxW).
When indication #1 or #2 appear in dmesg, user should make sure to use a PCIe
slot that is capable of supplying the required power.

HCAs: mlx5

Message Signaled
Interrupts-X (MSI-X)
Vectors

Added support for using a single MSI-X vector for all control event queues instead of one
MSI-X vector per queue in a virtual function driver. This frees extra MSI-X vectors to be
used for completion event queue, allowing for additional traffic channels in the network
device.

Send APIs Introduced a new set of QP Send operations (APIs) which allows extensibility for new
Send opcodes.

DC Data-path Added DC QP data-path support using new Send APIs introduced in Direct Verbs (DV).

HCAs: BlueField

BlueField Support BlueField is now fully supported as part of the Mellanox OFED mainstream version
sharing the same code baseline with all the adapters product line.

Representor Name
Change

In SwitchDev mode:

Uplink representors are now called p0/p1
Host PF representors are now called pf0hpf/pf1hpf
VF representors are now called pf0vfN/pf1vfN

ECPF Net Devices In SwitchDev mode, net devices enp3s0f0 and enp3s0f1 are no longer created.

Setting Host MAC
and Tx Rate Limit
from ECPF

Expanded to support VFs as well as the host PFs.

HCAs: All

288

RDMA-CM
Application
Managed QP

Added support for the RDMA application to manage its own QPs and use RDMA-CM only
for exchanging Address information.

RDMA-CM QP
Timeout Control

Added a new option to rdma_set_option that allows applications to override the RDMA-
CM's QP ACK timeout value.

MLNX_OFED Verbs
API

As of MLNX_OFED v5.0 release (Q1 2020) onwards, MLNX_OFED Verbs API will be
migrated from the legacy version of the user space verbs libraries (libibervs, libmlx5 ..) to
the upstream version rdma-core.
More details are available in MLNX_OFED user manual under Installing Upstream rdma-
core Libraries.

Bug Fixes See Bug Fixes section.

4.5-1.0.1.0

HCAs: ConnectX-5

VFs per PF Increased the amount of maximum virtual functions (VF) that can be allocated to a
physical function (PF) to 127 VF.

HCAs: ConnectX-4/ ConnectX-4 Lx/ConnectX-5

SW-Defined UDP
Source Port for
RoCE v2

UDP source port for RoCE v2 packets is now calculated by the driver rather than the
firmware, achieving better distribution and less congestion. This mechanism works for
RDMA- CM QPs only, and ensures that RDMA connection messages and data messages
have the same UDP source port value.

HCAs: mlx5 Driver

Local Loopback
Disable

Added the ability to manually disable Local Loopback regardless of the number of open
user-space transport domains.

HCAs: ConnectX-6

Adapter Cards Added support for ConnectX-6 Ready. For further information, please contact Mellanox
Support.

HCAs: All

NEO-Host Integrated NEO-Host for orchestration and management of host networking into
MLNX_OFED package.

Bug Fixes See Bug Fixes section.

4.4-2.0.7.0

HCAs: All

Bug Fixes See Bug Fixes section.

4.4-1.0.0.0

HCAs: ConnectX-4/ConnectX-4 Lx/ConnectX-5

Adaptive Interrupt
Moderation

Added support for adaptive Tx, which optimizes the moderation values of the Tx CQs on
runtime for maximum throughput with minimum CPU overhead.

This mode is enabled by default.

https://mymellanox.force.com/support/SupportLogin
https://mymellanox.force.com/support/SupportLogin

289

•
•

Updated Adaptive Rx to ignore ACK packets so that queues that only handle ACK packets
remain with the default moderation.

Docker Containers
[Beta]

Added support for Docker containers to run over Virtual RoCE and InfiniBand devices
using SR-IOV mode.

VF Statistics Performed the following virtual function statistics changes:

Added tx_broadcast and tx_multicast counters
Included RDMA statistics for existing counters

Force TTL Added support for setting a global TTL value for all RC QPs and rdma-cm QPs.

Firmware Tracer Added a new mechanism for the device’s FW/HW to log important events into the event
tracing system (/sys/kernel/debug/tracing) without requiring any Mellanox-specific tool.

Note: This feature is enabled by default.

CR-Dump Accelerated the original cr-dump by optimizing the reading process of the device’s CR-
Space snapshot.

RoCE ICRC Error
Counter

Added support for a new counter that exposes the amount of corrupted RoCE packets
that arrive with bad Invariant Cyclic Redundancy Code (ICRC).

HCAs: ConnectX-4/ConnectX-4 Lx

VST Q-in-Q Added support for C-tag (0x8100) VLAN insertion to tagged packets in VST mode.

HCAs: ConnectX-4

Ethernet Tunneling
Over IPoIB Driver
(eIPoIB)

Re-added support for eth_ipoib driver, which provides a standard Ethernet interface to be
used as a Physical Interface (PIF) into the Hypervisor virtual network, and serves one or
more Virtual Interfaces (VIF).

HCAs: ConnectX-4 Lx/ConnectX-5

OVS Offload using
ASAP2

Added support for Mellanox Accelerated Switching And Packet Processing (ASAP2)
technology, which allows OVS offloading by handling OVS data-plane, while maintaining
OVS control-plane unmodified. OVS Offload using ASAP2 technology provides significantly
higher OVS performance without the associated CPU load.

For further information, refer to ASAP2 Release Notes under www.mellanox.com ->
Products -> Software -> ASAP2

HCAs: All

Upstream Libraries Added a repository repodata to support installing upstream libraries (based on upstream
rdma-core), using he Operating System's standard package manager (yum, apt-get, etc.).

For further information, please refer to “Installing Upstream rdma-core Libraries”
section in MLNX_OFED User Manual

Note: This is intended only for DPDK users.

Installation Added support for new metadata packages that only install userspace packages at a time
(without any kernel packages), using the Operating System's standard package manager
(yum, apt-get, etc.). These metadata packages will have the suffix “-user-only”. For
example: “mlnx-ofed-all-user-only”.

Bug Fixes See Bug Fixes section.

http://www.mellanox.com

290

•
•

4.3-1.0.1.0

HCAs: ConnectX-4/ConnectX-4 Lx/ConnectX-5

Adaptive Interrupt
Moderation

Added support for adaptive Tx, which optimizes the moderation values of the Tx CQs on
runtime for maximum throughput with minimum CPU overhead.

This mode is enabled by default.

Updated Adaptive Rx to ignore ACK packets so that queues that only handle ACK packets
remain with the default moderation.

Docker Containers
[Beta]

Added support for Docker containers to run over Virtual RoCE and InfiniBand devices
using SR-IOV mode.

VF Statistics Performed the following virtual function statistics changes:

Added tx_broadcast and tx_multicast counters
Included RDMA statistics for existing counters

Force TTL Added support for setting a global TTL value for all RC QPs and rdma-cm QPs.

Firmware Tracer Added a new mechanism for the device’s FW/HW to log important events into the event
tracing system (/sys/kernel/debug/tracing) without requiring any Mellanox-specific tool.

Note: This feature is enabled by default.

CR-Dump Accelerated the original cr-dump by optimizing the reading process of the device’s CR-
Space snapshot.

RoCE ICRC Error
Counter

Added support for a new counter that exposes the amount of corrupted RoCE packets
that arrive with bad Invariant Cyclic Redundancy Code (ICRC).

HCAs: ConnectX-4/ConnectX-4 Lx

VST Q-in-Q Added support for C-tag (0x8100) VLAN insertion to tagged packets in VST mode.

HCAs: ConnectX-4

Ethernet Tunneling
Over IPoIB Driver
(eIPoIB)

Re-added support for eth_ipoib driver, which provides a standard Ethernet interface to be
used as a Physical Interface (PIF) into the Hypervisor virtual network, and serves one or
more Virtual Interfaces (VIF).

HCAs: ConnectX-5/ConnectX-4 Lx

OVS Offload using
ASAP2

Added support for Mellanox Accelerated Switching And Packet Processing (ASAP2)
technology, which allows OVS offloading by handling OVS data-plane, while maintaining
OVS control-plane unmodified. OVS Offload using ASAP2 technology provides significantly
higher OVS performance without the associated CPU load.

For further information, refer to ASAP2 Release Notes under www.mellanox.com ->
Products -> Software -> ASAP2

HCAs: All

http://www.mellanox.com

291

•
•

•
•

Upstream Libraries Added a repository repodata to support installing upstream libraries (based on upstream
rdma-core), using the Operating System's standard package manager (yum, apt-get,
etc.).

For further information, please refer to “Installing Upstream rdma-core Libraries”
section in MLNX_OFED User Manual

Note: This is intended only for DPDK users.

Installation Added support for new metadata packages that only install userspace packages at a time
(without any kernel packages), using the Operating System's standard package manager
(yum, apt-get, etc.). These metadata packages will have the suffix “-user-only”. For
example: “mlnx-ofed-all-user-only”.

Bug Fixes See Bug Fixes section.

4.3-1.0.1.0

HCAs: ConnectX-5

Multi-Packet Work
Request (WR)

Added support for the following multi-packet WR related verbs for control path:

ibv_exp_query_device
ibv_exp_create_srq

For further information on the use of these verbs, please refer to the Verbs man page.

Coherent
Accelerator
Processor Interface
(CAPI) [beta]

Added support for CAPI, an interface that enables
ConnectX-5 adapter cards to provide the best performance for Power and OpenPower
based platforms.

Tunneled Atomic Added support for RDMA atomic commands offload so that when an RDMA Write
operation is issued, the payload indicates which atomic operation to perform, instead of
being written to the Memory Region (MR).

Packet Pacing Added support for the following advanced burst control parameters:

max_burst_sz - for indicating the maximal burst size of packets
typical_pkt_sz - for improving the accuracy of the rate limiter

Erasure Coding
Offload verbs

Added support for erasure coding offload software verbs (encode/decode/update API)
supporting a number of redundancy blocks (m) greater than 4.

HCAs: ConnectX-4/ConnectX-4 Lx/ConnectX-5

Virtual MAC Removed support for Virtual MAC feature.

RoCE LAG Added out of box RoCE LAG support for RHEL 7.2 and RHEL 6.9.

Dropped Counters Added a new counter rx_steer_missed_packets which provides the number of packets
that were received by the NIC, yet were discarded/dropped since they did not match any
flow in the NIC steering flow table.

Added the ability for SR-IOV counter rx_dropped to count the number of packets that
were dropped while vport was down.

Relaxed Ordering
(RSYNC)

Added support for RSYNC feature to ensure correct ordering of memory operations
between the GPU and HCA.

HCAs: mlx5 Driver

292

•
•
•

Reset Flow Added support for triggering software reset for firmware/driver recovery. When fatal
errors occur, firmware can be reset and driver reloaded.

HCAs: ConnectX-4 Lx/ConnectX-5

Striding RQ with HW
Time-Stamping

Added the option to retrieve the HW timestamp when polling for completions from a
completion queue that is attached to a multi-packet RQ (Striding RQ).

HCAs: ConnectX-4/ConnectX-4 Lx/ConnectX-5

4.2-1.2.0.0

DSCP Trust Mode Added support for automatically setting the number of TC to 8 when the Trust state is
changed to DSCP.

Receive Buffer Added xon and xoff columns to the Receive Buffer configuration display.

4.2-1.0.0.0

HCAs: mlx5 Driver

Physical Address
Memory Allocation

Added support to register a specific physical address range.

HCAs: Innova IPsec EN

Innova IPsec
Adapter Cards

Added support for Mellanox Innova IPsec EN adapter card, that provides security
acceleration for IPsec-enabled networks.

HCAs: ConnectX-4/ConnectX-4 Lx/ConnectX-5

Precision Time
Protocol (PTP)

Added support for PTP feature over PKEY interfaces.

This feature allows for accurate synchronization between the distributed entities over the
network. The synchronization is based on symmetric Round Trip Time (RTT) between the
master and slave devices, and is enabled by default.

1PPS Time
Synchronization

Added support for One Pulse Per Second (1PPS) over IPoIB interfaces.

Virtual MAC Added support for Virtual MAC feature, which allows users to add up to 4 virtual MACs
(VMACs) per VF. All traffic that is destined to the VMAC will be forwarded to the relevant
VF instead of PF. All traffic going out from the VF with source MAC equal to VMAC will go
to the wire also when Spoof Check is enabled.

For further information, please refer to “Virtual MAC” section in MLNX_OFED User
Manual.

Receive Buffer Added the option to change receive buffer size and cable length. Changing cable length
will adjust the receive buffer's xon and xoff thresholds.

For further information, please refer to “Receive Buffer” section in MLNX_OFED User
Manual.

GRE Tunnel Offloads Added support for the following GRE tunnel offloads:

TSO over GRE tunnels
Checksum offloads over GRE tunnels
RSS spread for GRE packets

293

•
•

NVMEoF Added support for the host side (RDMA initiator) in RedHat 7.2 and above.

Dropless Receive
Queue (RQ)

Added support for the driver to notify the FW when SW receive queues are overloaded.

PFC Storm
Prevention

Added support for configuring PFC stall prevention in cases where the device
unexpectedly becomes unresponsive for a long period of time. PFC stall prevention
disables flow control mechanisms when the device is stalled for a period longer than the
default pre-configured timeout. Users now have the ability to change the default timeout
by moving to auto mode.

For further information, please refer to “PFC Stall Prevention” section in
MLNX_OFEDUser Manual.

Force DSCP Added support for this feature that enables setting a

global traffic_class value for all RC QPs.

HCAs: ConnectX-5

Q-in-Q Added support for Q-in-Q VST feature in ConnectX-5 adapter cards family.

Device Memory
Programming [beta]

Added support for on-chip memory allocation and usage in send/receive and RDMA
operations at beta level.

Virtual Guest
Tagging (VGT+)

Added support for VGT+ in ConnectX-4/ConnectX-5 HCAs. This feature is s an advanced
mode of Virtual Guest Tagging (VGT), in which a VF is allowed to tag its own packets as in
VGT, but is still subject to an administrative VLAN trunk policy. The policy determines
which VLAN IDs are allowed to be transmitted or received. The policy does not determine
the user priority, which is left unchanged.

For further information, please refer to “Virtual Guest Tagging (VGT+)” section in
MLNX_OFED User Manual.

Tag Matching
Offload

Added support for hardware Tag Matching offload with Dynamically Connected Transport
(DCT).

HCAs: ConnectX-3/ConnectX-3 Pro

Shared Memory
Region (MR)

Removed support for Shared MR feature on ConnectX-3/ConnectX-3 Pro adapter cards.
As a result of this change, the following API/flags should not be used:

ibv_exp_reg_shared_mr
access shared flags for ibv_exp_reg_mr (IBV_EXP_ACCESS_SHARED_MR_XXX)

HCAs: All

CR-DUMP Added support for the driver to take an automatic snapshot of the device’s CR-Space in
cases of critical failures.

For further information, please refer to “CRDUMP” section in MLNX_OFED User Manual.

Upstream Libraries Added the option to install upstream libraries (based on upstream rdma-core) for DPDK
users only.

For further information, please refer to “Installing Upstream rdma-core Libraries”
section in MLNX_OFED User Manual.

DiSNI Added the option to install libdisni package as part of MLNX_OFED.

For further information, please refer to section “Installing libdisni Package” in
MLNX_OFED User Manual.

294

Service Scripts Added the ability to disable the ‘ stop ’ option in the openibd service script, by setting
ALLOW_STOP=no in
/etc/infiniband/openib.conf.

Starting from the next release, ‘ stop ’ option will be disabled by default, and in order to
enable it, ALLOW_STOP should be set to ‘yes’ in the conf file, or force-stop should be run.

4.1-1.0.2.0

HCAs: mlx5 Driver

RoCE Diagnostics
and ECN Counters

Added support for additional RoCE diagnostics and ECN congestion counters under /sys/
class/infiniband/mlx5_0/ports/1/hw_counters/ directory.

For further information, refer to the Understanding mlx5 Linux Counters and Status
Parameters Community post.

rx-fcs Offload
(ethtool)

Added support for rx-fcs ethtool offload configuration. Normally, the FCS of the packet
will be truncated by the ASIC hardware before sending it to the application socket buffer
(skb). Ethtool allows to set the rx-fcs not to be truncated, but to pass it to the application
for analysis.

For more information and usage, refer to Understanding ethtool rx-fcs for mlx5
Drivers Community post.

DSCP Trust Mode Added the option to enable PFC based on the DSCP value. Using this solution, VLAN
headers will no longer be mandatory for use.

For further information, refer to the HowTo Configure Trust Mode on Mellanox
Adapters Community post.

RoCE ECN
Parameters

ECN parameters have been moved to the following directory: /sys/kernel/debug/mlx5/
<PCI BUS>/cc_params/

For more information, refer to the HowTo Configure DCQCN (RoCE CC) for ConnectX-4
(Linux) Community post.

Flow Steering Dump
Tool

Added support for mlx_fs_dump, which is a python tool that prints the steering rules in a
readable manner.

Secure Firmware
Updates

Firmware binaries embedded in MLNX_OFED package now support Secure Firmware
Updates. This feature provides devices with the ability to verify digital signatures of new
firmware binaries, in order to ensure that only officially approved versions are installed
on the devices.

For further information on this feature, refer to Mellanox Firmware Tools (MFT) User
Manual.

Enhanced IPoIB Added support for Enhanced IPoIB feature, which enables better utilization of features
supported in ConnectX-4 adapter cards, by optimizing IPoIB data path and thus, reaching
peak performance in both bandwidth and latency.

Enhanced IPoIB is enabled by default.

PeerDirect Added the ability to open a device and create a context while giving PCI peer attributes
such as name and ID.

For further details, refer to the PeerDirect Programming Community post.

Probed VFs Added the ability to disable probed VFs on the hypervisor. For further information, see Ho
wTo Configure and Probe VFs on mlx5 Drivers Community post.

https://community.mellanox.com/docs/DOC-2572
https://community.mellanox.com/docs/DOC-2572
https://community.mellanox.com/docs/DOC-2867
https://community.mellanox.com/docs/DOC-2867
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2866
https://community.mellanox.com/docs/DOC-2521
https://community.mellanox.com/docs/DOC-2521
https://community.mellanox.com/docs/DOC-2890
https://community.mellanox.com/docs/DOC-2849
https://community.mellanox.com/docs/DOC-2849

295

Local Loopback Improved performance by rendering Local loopback (unicast and multicast) disabled by
mlx5 driver by default while local loopback is not in use. The mlx5 driver keeps track of
the number of transport domains that are opened by user-space applications. If there is
more than one user-space transport domain open, local loopback will automatically be
enabled.

1PPS Time
Synchronization (at
alpha level)

Added support for One Pulse Per Second (1PPS), which is a time synchronization feature
that allows the adapter to send or receive 1 pulse per second on a dedicated pin on the
adapter card.

For further information on this feature, refer to the HowTo Test 1PPS on Mellanox
Adapters Community post.

Precision Time
Protocol (PTP)

Added support for PTP feature in IPoIB offloaded devices.

This feature allows for accurate synchronization between the distributed entities over the
network.

The synchronization is based on symmetric Round Trip Time (RTT) between the master
and slave devices.

The feature is enabled by default.

For further information, refer to Running Linux PTP with ConnectX-4 Community post.

Fast Driver Unload Added support for fast driver teardown in shutdown and kexec flows.

HCAs: ConnectX-5/ConnectX-5 Ex

NVMEoF Target
Offload

Added support for NVMe over fabrics (NVMEoF) offload, an implementation of the new
NVMEoF standard target (server) side in hardware.

For further information on NVMEoF Target Offload, refer to HowTo Configure NVMEoF
Target Offload .

MPI Tag Matching Added support for offloading MPI tag matching to HCA.

HCAs: All

RDMA CM Changed the default RoCE mode on which RDMA CM runs to RoCEv2 instead of RoCEv1.

RDMA_CM session requires both the client and server sides to support the same RoCE
mode. Otherwise, the client will fail to connect to the server.

For further information, refer to RDMA CM and RoCE Version Defaults Community post.

Lustre Added support for Lustre file system open-source project.

4.0-2.0.2.0

Operating Systems Added support for Ubuntu v17.04.

4.0-2.0.0.1

PCIe Error Counting [ConnectX-4/ConnectX-4 Lx] Added the ability to expose physical layer statistical
counters to ethtool.

Multiprotocol Label
Switching (MPLS)
Tagged Packets
Classification

[ConnectX-4/ConnectX-4 Lx] Enabled packet flow steering rules with IPv4/IPv6
classification (for raw packet QP (DPDK) only) to work on IPv4/IPv6 over MPLS (Ethertype
0x8847 and 0x8848) encapsulated packets.

https://community.mellanox.com/docs/DOC-2900
https://community.mellanox.com/docs/DOC-2900
https://community.mellanox.com/docs/DOC-2403
https://community.mellanox.com/docs/DOC-2918
https://community.mellanox.com/docs/DOC-2918
https://community.mellanox.com/docs/DOC-2912

296

RoCE VFs [ConnectX-4/ConnectX-4 Lx] Added the ability to enable/disable RoCE on VFs.

RoCE LAG [ConnectX-4/ConnectX-4 Lx] Added support for RoCE over LAG interface.

Standard ethtool [ConnectX-4/ConnectX-4 Lx] Added support for flow steering and rx-all mode.

SR-IOV Bandwidth
Share for Ethernet/
RoCE (beta)

[ConnectX-4/ConnectX-4 Lx] Added the ability to guarantee the minimum rate of a certain
VF in SR-IOV mode.

Adapter Cards Added support for ConnectX-5 and ConnectX-5 Ex HCAs.

DSCP ConfigFS
Control for RDMA-
CM QPs

Added the ability to configure ToS/DSCP for RDMA-CM QPs only.

Soft RoCE (beta) Add software implementation of RoCE that allows RoCE to run on any Ethernet network
adapter whether it offers hardware acceleration or not.

NVMe over Fabrics
(NVMEoF)

NVMEoF related module installation has been disabled by default. In order to enable it,
add the “ --with-nvmf ” installation option to the “mlnxofedinstall” script.

NFS over RDMA
(NFSoRDMA)

Removed support for NFSoRDMA drivers. These drivers are no longer provided along
with the MLNX_OFED package.

Mellanox Technologies | 350 Oakmead Parkway Suite 100, Sunnyvale, CA 94085 http://
www.mellanox.com

Notice
This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. Neither NVIDIA Corporation nor any of its direct
or indirect subsidiaries (collectively: “NVIDIA”) make any representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and
assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third
parties that may result from its use. This document is not a commitment to develop, release, or deliver
any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or
indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the
NVIDIA product can reasonably be expected to result in personal injury, death, or property or
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such
equipment or applications and therefore such inclusion and/or use is at customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It
is customer’s sole responsibility to evaluate and determine the applicability of any information
contained in this document, ensure the product is suitable and fit for the application planned by
customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and
reliability of the NVIDIA product and may result in additional or different conditions and/or
requirements beyond those contained in this document. NVIDIA accepts no liability related to any
default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA
product in any manner that is contrary to this document or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in
writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES,
DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
“MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL
NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN
IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any
damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative

http://www.mellanox.com
http://www.mellanox.com

Mellanox Technologies | 350 Oakmead Parkway Suite 100, Sunnyvale, CA 94085 http://
www.mellanox.com

liability towards customer for the products described herein shall be limited in accordance with the
Terms of Sale for the product.
Trademarks
NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox
Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.
For the complete and most updated list of Mellanox trademarks, visit http://www.mellanox.com/page/
trademarks
Copyright
© 2020 Mellanox Technologies Ltd. All rights reserved.

http://www.mellanox.com
http://www.mellanox.com
http://www.mellanox.com/page/trademarks
http://www.mellanox.com/page/trademarks

	Release Notes
	Supported NICs Speeds
	Package Contents
	General Support in MLNX_OFED
	MLNX_OFED Supported Operating Systems
	Supported Non-Linux Virtual Machines
	Support in ASAP2™
	ASAP2 Supported Operating Systems
	OVS-Kernel SR-IOV Based Supported OSs

	ASAP2 Requirements
	ASAP2 Supported Adapter Cards

	NFS over RDMA (NFSoRDMA) Supported Operating Systems
	Lustre Versions Supported by MLNX_OFED
	NEO-Host Supported Operating Systems
	GPUDirect Storage (GDS) Supported Operating Systems
	Hardware and Software Requirements
	Supported NICs Firmware Versions
	MLNX_OFED Unsupported Functionalities/Features/NICs

	Changes and New Features
	MLNX_OFED New Features
	API Changes in MLNX_OFED
	MLNX_OFED Verbs API Migration

	Known Issues
	Bug Fixes

	Introduction
	Stack Architecture
	Mellanox OFED Package
	Module Parameters
	Device Capabilities

	Installation
	Hardware and Software Requirements
	Downloading Mellanox OFED
	Installing Mellanox OFED
	Installation Script
	Installation Procedure
	Installation Results
	Installation Logging
	Driver Load Upon System Boot
	mlnxofedinstall Return Codes
	Additional Installation Procedures
	Installing MLNX_OFED on Innova™ IPsec Adapter Cards
	Installing MLNX_OFED Using YUM
	Setting up MLNX_OFED YUM Repository
	Installing MLNX_OFED Using the YUM Tool

	Installing MLNX_OFED Using apt-get
	Setting up MLNX_OFED apt-get Repository
	Installing MLNX_OFED Using the apt-get Tool

	Installing NEO-Host Using mlnxofedinstall Script

	Uninstalling Mellanox OFED
	Uninstalling Mellanox OFED Using the YUM Tool
	Uninstalling Mellanox OFED Using the apt-get Tool

	Updating Firmware After Installation
	Updating the Device Online
	Updating the Device Manually
	Updating the Device Firmware Automatically upon System Boot
	Updating Firmware and FPGA Image on Innova IPsec Cards

	UEFI Secure Boot
	Enrolling Mellanox's x.509 Public Key On your Systems
	Removing Signature from Kernel Modules

	Performance Tuning

	Features Overview and Configuration
	Ethernet Network
	Ethernet Interface
	Port Type Management/VPI Cards Configuration
	Counters
	RoCE Counters
	SR-IOV Counters
	ethtool Counters

	Persistent Naming
	Interrupt Request (IRQ) Naming

	Quality of Service (QoS)
	Mapping Traffic to Traffic Classes
	Plain Ethernet Quality of Service Mapping
	RoCE Quality of Service Mapping
	Map Priorities with set_egress_map
	Quality of Service Properties
	Strict Priority
	Enhanced Transmission Selection (ETS)
	Rate Limit
	Trust State
	Receive Buffer
	DCBX Control Mode

	Quality of Service Tools
	mlnx_qos
	Additional Tools

	Packet Pacing
	System Requirements
	Packet Pacing Configuration

	Ethtool
	Checksum Offload
	Ignore Frame Check Sequence (FCS) Errors
	RDMA over Converged Ethernet (RoCE)
	RoCE Modes
	RoCEv1
	RoCEv2

	GID Table Population
	Setting the RoCE Mode for a Queue Pair (QP)
	Setting RoCE Mode of RDMA_CM Applications
	GID Table Example

	RoCE Lossless Ethernet Configuration
	Configuring SwitchX® Based Switch System

	Installing and Loading the Driver
	Associating InfiniBand Ports to Ethernet Ports
	Configuring an IP Address to the netdev Interface
	Adding VLANs
	Defining Ethernet Priority (PCP in 802.1q Headers)
	Using rdma_cm Tests

	Type Of Service (ToS)
	Overview
	DSCP

	RoCE LAG
	Disabling RoCE
	Enabling/Disabling RoCE on VMs via VFs
	Force DSCP
	Force Time to Live (TTL)

	Flow Control
	Priority Flow Control (PFC)
	Configuring PFC on ConnectX-4 and above
	PFC Configuration Using LLDP DCBX
	PFC Configuration on Hosts
	PFC Configuration on Switches
	ConnectX-4 Counters

	PFC Storm Prevention

	Dropless Receive Queue (RQ)

	Explicit Congestion Notification (ECN)
	Enabling ECN

	RSS Support
	RSS Hash Function
	RSS Verbs Support
	RSS Flow Steering
	Verbs

	Time-Stamping
	Time-Stamping Service
	Enabling Time-Stamping
	Getting Time-Stamping
	Time Stamping Capabilities via ethtool
	Steering PTP Traffic to Single RX Ring

	RoCE Time-Stamping
	Query Capabilities
	Creating a Time-Stamping Completion Queue
	Querying the Hardware Time

	One Pulse Per Second (1PPS)

	Flow Steering
	Flow Steering Support
	Flow Domains and Priorities
	Ethtool
	Accelerated Receive Flow Steering (aRFS)
	Flow Steering Dump Tool

	Wake-on-LAN (WoL)
	Hardware Accelerated 802.1ad VLAN (Q-in-Q Tunneling)
	VLAN Stripping in Linux Verbs
	Dump Configuration
	Dump Parameters (Bitmap Flag)
	Configuration

	Local Loopback Disable
	Kernel Transport Layer Security (kTLS) Offloads
	Overview
	Establishing a kTLS Connection
	Kernel Support
	Configuring kTLS Offloads

	IPsec Crypto Offload
	Overview and Configuration
	Configuring Security Associations for IPsec Offloads

	InfiniBand Network
	InfiniBand Interface
	Port Type Management
	RDMA Counters

	OpenSM
	opensm
	Environment Variables
	Signaling
	Running opensm
	Running OpenSM As Daemon

	osmtest
	Partitions
	File Format

	Effect of Topology Changes
	Routing Algorithms
	Min Hop Algorithm
	UPDN Algorithm
	UPDN Algorithm Usage

	Fat-tree Routing Algorithm
	LASH Routing Algorithm
	DOR Routing Algorithm
	Torus-2QoS Routing Algorithm
	Unicast Routing
	Multicast Routing
	Torus Topology Discovery
	Quality Of Service Configuration
	Torus-2QoS Configuration File Syntax

	Routing Chains
	Configuring Routing Chains
	Defining Port Groups
	Defining a Port Group Policy File
	Configuring a Port Group Policy
	Port Group Qualifiers
	Predefined Port Groups
	Port Groups Policy Examples
	Defining a Topologies Policy File
	Configuring a Topology Policy
	Topology Qualifiers
	Configuration File per Routing Engine
	Defining a Routing Chain Policy File
	First Routing Engine in the Chain
	Configuring a Routing Chains Policy
	Routing Engine Qualifiers
	Dump Files per Routing Engine

	Unicast Routing Cache
	Quality of Service Management in OpenSM
	Advanced QoS Policy File
	Simple QoS Policy Definition
	Policy File Syntax Guidelines
	Examples of Advanced Policy Files
	Simple QoS Policy - Details and Examples
	IPoIB
	SRP
	MPI
	SL2VL Mapping and VL Arbitration
	Deployment Example
	Enhanced QoS
	Enhanced QoS Policy File
	Special Keywords
	Special Subnet Manager Configuration Options
	Notes
	Policy File Example
	QoS Configuration Examples
	Typical HPC Example: MPI and Lustre
	EDC SOA (2-tier): IPoIB and SRP
	EDC (3-tier): IPoIB, RDS, SRP

	Adaptive Routing Manager and SHIELD
	Congestion Control Manager
	Running OpenSM with Congestion Control Manager
	Configuring Congestion Control Manager
	Configuring Congestion Control Manager Main Settings
	Congestion Control Manager Options File

	DOS MAD Prevention
	MAD Congestion Control
	IB Router Support in OpenSM
	OpenSM Activity Report
	Offsweep Balancing

	QoS - Quality of Service
	QoS Architecture
	Supported Policy
	Port Group
	Fabric Setup
	QoS-Levels Definition
	Matching Rules

	CMA Features
	IPoIB
	SRP

	IP over InfiniBand (IPoIB)
	Upper Layer Protocol (ULP)
	Enhanced IPoIB
	IPoIB Mode Setting
	Port Configuration
	IPoIB Configuration
	IPoIB Configuration Based on DHCP
	DHCP Server
	DHCP Client (Optional)
	Static IPoIB Configuration
	Manually Configuring IPoIB

	Sub-interfaces
	Creating a Subinterface
	Removing a Subinterface

	Verifying IPoIB Functionality
	Bonding IPoIB
	Dynamic PKey Change
	Precision Time Protocol (PTP) over IPoIB
	One Pulse Per Second (1PPS) over IPoIB

	Advanced Transport
	Atomic Operations
	Atomic Operations in mlx5 Driver
	Enhanced Atomic Operations
	Masked Compare and Swap (MskCmpSwap)
	Masked Fetch and Add (MFetchAdd)

	XRC - eXtended Reliable Connected Transport Service for InfiniBand
	Dynamically Connected Transport (DCT)
	MPI Tag Matching and Rendezvous Offloads

	Optimized Memory Access
	Memory Region Re-registration
	Memory Window
	Query Capabilities
	Memory Window Allocation
	Binding Memory Windows
	Invalidating Memory Window
	Deallocating Memory Window

	User-Mode Memory Registration (UMR)
	On-Demand-Paging (ODP)
	Query Capabilities
	Registering ODP Explicit and Implicit MR
	De-registering ODP MR
	Advice MR Verb
	ODP Statistics

	Inline-Receive

	Mellanox PeerDirect®
	Mellanox PeerDirect Async
	Mellanox Relaxed Ordering (RSYNC)

	CPU Overhead Distribution
	Out-of-Order (OOO) Data Placement
	Overview

	IB Router

	Storage Protocols
	SRP - SCSI RDMA Protocol
	SRP Initiator
	Loading SRP Initiator
	SRP Module Parameters
	SRP Remote Ports Parameters
	Manually Establishing an SRP Connection
	SRP sysfs Parameters
	SRP Tools - ibsrpdm, srp_daemon and srpd Service Script
	ibsrpdm
	srpd
	srp_daemon

	Automatic Discovery and Connection to Targets
	Multiple Connections from Initiator InfiniBand Port to the Target
	High Availability (HA)
	Operation
	Manual Activation of High Availability
	Automatic Activation of High Availability

	Shutting Down SRP

	iSCSI Extensions for RDMA (iSER)
	iSER Initiator
	iSER Targets

	Lustre
	NVME-oF - NVM Express over Fabrics
	NVME-oF
	NVME-oF Target Offload

	Virtualization
	Single Root IO Virtualization (SR-IOV)
	System Requirements
	Setting Up SR-IOV
	Configuring SR-IOV (Ethernet)
	Configuring SR-IOV (InfiniBand)
	VFs Initialization Note
	PCI BDF Mapping of PFs and VFs

	Additional SR-IOV Configurations
	Assigning a Virtual Function to a Virtual Machine
	Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server
	Ethernet Virtual Function Configuration when Running SR-IOV
	VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)
	Additional Ethernet VF Configuration Options
	Virtual Function Statistics
	Mapping VFs to Ports
	Mapping VFs to Ports using the mlnx_get_vfs.pl tool
	RoCE Support

	Virtual Guest Tagging (VGT+)
	Configuration

	SR-IOV Advanced Security Features
	SR-IOV MAC Anti-Spoofing
	Limit and Bandwidth Share Per VF
	Limit Bandwidth per Group of VFs
	Bandwidth Guarantee per Group of VFs
	Privileged VFs
	Probed VFs

	VF Promiscuous Rx Modes
	VF Promiscuous Mode
	VF All-Multi Mode

	Uninstalling the SR-IOV Driver
	SR-IOV Live Migration
	Overview
	Prerequisites
	Host Servers Configuration
	VM OS installation Using "virt-manager"
	VFs to VMs Deployment
	Mellanox ASAP2 with OVS Deployment
	Live Migration with Paravirtual Path and Traffic

	Enabling Paravirtualization
	VXLAN Hardware Stateless Offloads
	Enabling VXLAN Hardware Stateless Offloads
	Important Notes

	Q-in-Q Encapsulation per VF in Linux (VST)
	Setup
	Prerequisites
	Configuring Q-in-Q Encapsulation per Virtual Function for ConnectX-5/ConnectX-6

	802.1Q Double-Tagging
	Configuring 802.1Q Double-Tagging per Virtual Function

	Resiliency
	Reset Flow
	Kernel ULPs
	User Space Applications (IB/RoCE)
	SR-IOV
	Forcing the VF to Reset
	Extended Error Handling (EEH)
	CRDUMP
	Firmware Tracer

	Docker Containers
	Docker Using SR-IOV
	Kubernetes Using SR-IOV
	Kubernetes with Shared HCA
	Mediated Devices
	Configuring Mediated Device

	HPC-X™
	Fast Driver Unload
	OVS Offload Using ASAP² Direct
	Overview
	Installing OVS-Kernel ASAP² Packages
	Installing OVS-DPDK ASAP² Packages
	Setting Up SR-IOV
	OVS Hardware Offloads Configuration
	OVS-Kernel Hardware Offloads
	Configuring Uplink Representor Mode
	Configuring SwitchDev
	Flow Statistics and Aging
	Offloading VLANs
	Offloading VXLAN Encapsulation/Decapsulation Actions
	Manually Adding TC Rules
	Examples

	SR-IOV VF LAG
	SR-IOV VF LAG Configuration on ASAP2
	Limitations

	Port Mirroring (Flow Based VF Traffic Mirroring for ASAP²)
	Performance Tuning Based on Traffic Patterns

	OVS-DPDK Hardware Offloads
	OVS-DPDK Hardware Offloads Configuration
	Offloading VXLAN Encapsulation/Decapsulation Actions
	Configuring VXLAN Encap/Decap Offloads

	Connection Tracking Offload
	SR-IOV VF LAG
	VirtIO Acceleration through VF Relay (Software vDPA)
	Software vDPA Configuration in OVS-DPDK Mode
	Software vDPA Configuration in OVS-Kernel Mode

	VirtIO Acceleration through Hardware vDPA
	Hardware vDPA Installation
	Hardware vDPA Configuration
	Running Hardware vDPA

	Appendix: Mellanox Firmware Tools

	Programming
	Raw Ethernet Programming
	Packet Pacing
	TCP Segmentation Offload (TSO)
	ToS Based Steering
	Flow ID Based Steering
	VXLAN Based Steering

	Device Memory Programming
	Device Memory Programming Model

	RDMA-CM QP Timeout Control
	RDMA-CM Application Managed QP

	InfiniBand Fabric Utilities
	Common Configuration, Interface and Addressing
	Topology File (Optional)

	InfiniBand Interface Definition
	Addressing
	Diagnostic Utilities
	Link Level Retransmission (LLR) in FDR Links

	Performance Utilities

	Troubleshooting
	General Issues
	Ethernet Related Issues
	InfiniBand Related Issues
	Installation Related Issues
	Installation Issues
	Fixing Application Binary Interface (ABI) Incompatibility with MLNX_OFED Kernel Modules
	Overview
	Detecting ABI Incompatibility with MLNX_OFED Modules
	Resolving ABI Incompatibility with MLNX_OFED Modules

	Performance Related Issues
	SR-IOV Related Issues
	PXE (FlexBoot) Related Issues
	RDMA Related Issues
	Debugging Related Issues
	OVS Offload Using ASAP2 Direct Related Issues

	Common Abbreviations and Related Documents
	User Manual Revision History
	Release Notes Change Log History

