Overview News & Events Contribution Tools Open Source Voices

HANDLING LOCAL MACHINE CHECK EXCEPTIONS IN LINUX*

BY ASHOK RAJ ON DEC 27,2017

INTRODUCTION

Mission critical servers must avoid downtime. Systems that require high availability as a part of their Service Level
Agreement (SLA) often require 24x7 uptime or 99.999% availability (also called 5-9's). This translates to about five
minutes of total downtime each year. IT installations require high availability because the loss of business caused by
downtime could be very expensive. These installations typically have several servers with fault tolerance, such as backup

servers. An example is the Stratus* computer that has been running for 24 years, and hasn't quit yet.m

One way to reduce downtime is to improve how the system handles hardware exceptions. The Intel® Xeon® family of
processors notifies the OS about hardware exceptions by signaling Machine Check Exceptions (MCEs). MCEs are
broadcast to all CPUs in the Intel® processor family. This was designed to limit exposure to uncorrectable errors (UC), such
as the case where the data is sent to a requester and the signaling of UC is still stuck in the pipeline. By stopping the
processing of all the logical CPUs in the system, the system could be stopped more quickly preventing consumption of
the corrupt data. For a full description of all the MCE features and OS recommended actions, refer to Chapter 15 Machine
Check Architecture, Volume 3B of the Intel® 64 and IA-32 Architectures Software Developer's Manual (SDM).

The Intel® Xeon® family of processors, starting with the X65xx and X75xx generation, have supported recovery from
certain uncorrectable errors (UE), specifically Patrol Scrub (PS) errors and Explicit Write Back (EWB) errors from Last level
cache (LLC). These errors are referred to as uncorrected recoverable (UCR) errors; Linux attempts to recover from these
UCR errors because they do not require a shutdown, as opposed to UC fatal errors. UCR errors were introduced starting
with Intel® Xeon® processors based on Intel® microarchitecture, code named Nehalem. These errors are asynchronous
and are not encountered in the execution path. The SDM refers to UCR errors as Software Recoverable Action Optional
(SRAQ), meaning no action is required at this time, because the corrupt data is not immediately being used. Therefore it is
safe for the system to continue to run. Linux added support for recovery from SRAO errors around the v2.6.32 timeframe.

Intel further enhanced MCE handling, starting with the E5-16xx, 26xx, and 46xx series of Intel® Xeon® family of
processors, by adding recovery from certain memory errors in the execution path (also known as memory poisoning
support). In cases when the CPU and platform enable poisoning support, when UC errors are discovered, the data is
tagged as poisoned and returned to the requester. When these errors are detected synchronously in the execution path,
they are reported by the Instruction Fetch Unit (IFU) or Data Cache Unit (DCU). This class of errors are referred to as

Cnftware Rernverahle Actinn Renrniired (SRAR) tn indirate that custem cenftware miict nerfarm cnme recovery hefare



Overview News & Events Contribution Tools Open Source Voices

with a poison indication, it prevented any potential data corruption scenario since the data was already tagged and any
attempted use of poisoned data would have been signaled before consumption.

While this approach worked well for many generations, broadcasting errors when only a single executing thread is
affected is very disruptive and can cause unintended fatal errors. For example, the Machine Check Architecture in the
Intel® processor family does not permit nested machine checks. If a second MCE is signaled while a logical processor is
still handling an earlier broadcast MCE, an automatic hardware-initiated shutdown will occur. Imagine a multi-threaded
application reading shared data. If two or more threads read the same poisoned memory location, it would result in a
system shutdown instead of allowing the system software to contain the failure.

Modern servers often host numerous virtual machines, each of which is supposed to be isolated from all others. However,
modern Linux Virtualization uses Kernel Samepage Merging (KSM). KSM is a memory-saving de-duplication feature that
merges anonymous (private) pages. While this technology reduces the overall memory footprint, it is another common
shared memory scenario where a single memory fault could cause a nested MCE and bring down the entire system.

System architectures have evolved to support modern cloud and data-center needs. One such configuration is the use of
Non-transparent bridge (NTB) that uses PCl to connect between an Intel® architecture system and other Intel architecture
or non-Intel architecture systems. There are several applications for NTB; one such case uses the link for fast data
duplication between systems. Advances in PCle such as Enhanced Downstream Port Containment (eDPC) allow memory
reads from PCle to return poison. When multiple processors access this memory region, this could easily trigger several
MCE’s as a result of simultaneously accessing an affected region. If MCE's are continued to be broadcast, this crossfire
could immediately result in system shutdown.

To accommodate these modern system architectures, Intel introduced the concept of Local Machine Check Exception
(LMCE). LMCE was first introduced in Intel® Xeon® Scalable processors (formerly known as Skylake). Linux support for
LMCE was added in v4.2

LOCAL MACHINE CHECK ARCHITECTURE

To accommodate legacy operating systems that always assume MCEs are broadcast, the default behavior of the hardware
is to continue to broadcast MCEs. To avoid broadcast related issues, an enlightened OS could opt-in to LMCE, which
would allow the system to behave in a more robust manner.

LMCE IDENTIFYING, ENABLING, AND DETECTION

The following section explains how to identify if an Intel® Xeon® processor supports Local Machine Check Exception
(LMCE), identifying BIOS support for the feature, and how to inject and test if Linux recovered from an exception.



Overview News & Events Contribution Tools Open Source Voices

63 2726 25 2423 1615 1211109 8 7 ]

Rasarvad Count

MCG_LMCE_P[27] Q

MCG_ELOG_P[28]
MCG_EMC_P[25]
MCG_SER_P[24]
MCG_EXT_CNT[23:18]
MCG_TES_P[11]
MEG_CMEL_P[10]
MCG_EXT P[]
MCG_CTL_P[8]

Figure 1:1A32_MCG_CAP[27] indicates presence of the feature.

To benefit from the LMCE-type signaling, OSes must opt-in to request hardware to avoid broadcasting these errors. To
opt-in, the OS sets bitO in MSR 1A32_MCG_EXT_CTL to indicates that SRAR type errors can be signaled to only the
affected logical CPU.

LMCE_EN - system software control to enable/disable LMCE

Figure 2:1A32_MCG_EXT_CTL - MSR to enable Local Machine Check

63 3

Resarved

=T0=10 |2

m=0nE|M
ETW=M =

LMCE_S5— ocal machine check exception siguf'lslhlzu:'lJ
MCIP—Machine check in progress flag

ElIPV—Error IP valid flag
RIPV—Restart IP valid flag




Overview News & Events Contribution Tools Open Source Voices

By default, Linux automatically enables LMCE if the CPU reports it and it is enabled in the BIOS. The BIOS configuration to
enable MCE and LMCE is shown below.

HOW TO IDENTIFY IF LMCE IS ENABLED IN BIOS

1. Ensure that msrtoolsis installed before performing the next step.

2. Check if IA32_MCG_CAP (0x179) shows LMCE is reported as available in hardware.
#rdmsr 0x179
Foeoc14

Binary: 1111 0000 0000 0000 1100 0001 0100
MSR_IA32_MCG_CAP (©0x179): bit 27 indicates LMCE is available.

3. Check that BIOS has enabled the feature. MSR_IA32 FEATURE_CONTROL (0x3a)

#rdmsr 0x3a

100005

Binary: 00010000 0000 0000 0000 0101

MSR_IA32_FEATURE_CONTROL.bit2@ is set indicates LMCE is enabled by BIOS for OS use.

4. Check if OS enabled the feature by checking MSR I1A32 EXT MCG_CTL (0x4d0)

#rdmsr 0x4doe
1

[PROC/INTERRUPTS

One way you can verify that your Linux OS has enabled LMCE versus broadcast MCE's is via the /proc/interrupts MCE
entry. When LMCE is enabled and an MCE is signaled to only a single logical processor, /proc/interrupts would show that
the exception was taken only by one CPU as indicated below. When MCE is broadcast to all CPUs, all processors count
the event.

#cat /proc/interrupts | grep MCE
MCE: 0 0 0 1

The example above shows one interrupt in a system that has four logical CPUs.

MCELOG

Another way to verify that your Linux OS has enabled LMCE is by checking output of the mcelog daemon. The MCG status
line will show that LMCE is enabled. Sample output below.



Overview News & Events Contribution Tools Open Source Voices

Uncorrected error

Error enabled

MCi_MISC register valid

MCi_ADDR register valid

SRAR

MCA: Data CACHE Level-0 Data-Read Error
STATUS bd80000000100134 MCGSTATUS f
MCGCAP f000c14 APICID e6 SOCKETID 3
CPUID Vendor Intel Family 6 Model 85

LMCE AND VIRTUALIZATION SUPPORT

Linux KVM and Qemu are also enabled to benefit from Local Machine Check Exception. KVM has supported LMCA since
v4.8 and Qemu version 2.7 enabled LMCE.

ENABLING LMCE IN BIOS

The following illustrations are based on early Purley-based systems. Consult your OEM/BIOS vendor documentation on
how to enable LMCE for your specific platforms.

Processor Configuration

apyright () 2006-20016, Intel Corporation




Overview News & Events Contribution Tools Open Source Voices

System Event Log

aopyright () 2006-20016, Intel Corporation

elCi Settings

aopyright () 2006-20016, Intel Corporation

1IAINIW HIFRLIFI AALIMIALIR T IAIF ARTIALINA




Overview News & Events Contribution Tools Open Source Voices

Local Machine Check Exception handling is now available in Linux* and on servers using the Intel® Xeon® processor family
starting with the X65xx and X75xx generation. Local Machine Check Exception handling avoids some of the pitfalls with
broadcast-based machine checks to significantly improve robustness in cloud and modern system architectures.

. http://www.cpushack.com/2017/01/28/stratus-servers-that-wont-quit-the-24-year-running-computer/

f ¥ in @& O

COPYRIGHT © 2021 INTEL CORPORATION. ALL RIGHTS RESERVED

*OTHER NAMES AND BRANDS MAY BE CLAIMED AS THE PROPERTY OF OTHERS



