LINUX KERNEL PERFORMANCE -

Linux development evolves rapidly. The performance and scalability of the OS kernel has been a key part of its success.
However, discussions have appeared on LKML (Linux Kernel Mailing List) regarding large performance regression
between kernel versions. These discussions underscore the need for a systematic and disciplined way to characterize,
improve, and test Linux kernel performance. Our goal is to work with the Linux community to further enhance the Linux
kernel with consistent performance increases (avoiding degradations) across releases. The information available on this
site gives community members better information about what 0-Day and LKP (Linux Kernel Performance) are doing to
preserve performance integrity of the kernel.

SHARE

ADDRESS RANGE PARTIAL MEMORY MIRRORING ON LINUX*

BY TONY LUCK ON NOV 15, 2016

INTRODUCTION

Mission critical servers must avoid down time at all costs, either because they are a single point of failure in a broader
system, or because the time to switch to a backup server is unacceptable for the running applications. Intel®
Architecture Processors have supported recoverable machine checks for several generations, and Linux* will respond
by signaling or terminating just the affected application. But there is a small, but important, gap in the recovery path.
If the error was triggered while executing OS kernel code, then the error is fatal. It is simply not possible to rewrite
every part of the Linux kernel to check for errors on every memory access and take some recovery action. Instead we
turn to hardware memory mirrors to solve this problem.

In its simplest form, memory mirroring simply keeps two copies (often called the primary and secondary) of the data.

LINUX KERNEL PERFORMANCE -

On a large server, memory might make up a significant portion of the hardware cost. Reducing the amount of
memory available to the OS and applications by a factor of two invariably has a large performance cost as well.
Therefore, only the most mission-critical systems mirror all of their memory.

Partial memory mirroring technology minimizes the performance and hardware costs of full memory mirroring. With
partial memory mirroring, the hardware can be configured to mirror just certain address ranges on each memory
controller, leaving the rest of memory unmirrored. This solution provides Linux servers with the stability and
reliability of mirrored memory on a granular, as-needed basis, while minimizing the additional memory (and cost)
required.

The Linux operating system has been modified to negotiate how much memory should be mirrored with the
platform firmware. It is not possible to adjust this amount at run time; a reboot is required each time you wish to
change the amount of mirrored memory. Because Linux can already recover from errors in application memory
without the entire system crashing, on partially mirrored systems Linux uses the mirrored memory for all kernel
allocations and the unmirrored memory for application allocations. Partial memory mirroring gives Linux servers
higher system availability than non-mirrored servers at a lower cost than servers with full memory mirroring.

MIRRORING MECHANICS

In each mirrored area of memory the memory controller keeps two copies of its data in memory. Any time the
memory is updated (either by the CPU or by I/O) the memory controller writes the new value to both copies. When
the data is read, the memory controller first tries to read the primary copy. If that successfully passes the ECC checks,
the data is provided to the reader immediately. If the primary read fails, then the memory controller begins the
recovery process described below:

* Read the secondary copy. If that also fails, then the data is lost and a machine check is logged and signaled.

e |f the secondary copy is good, then the data is returned to the reader. The memory controller also attempts to fix
the primary copy by updating it with the correct data.

e The memory controller rereads the primary copy. If the error was temporary, then this read will succeed and the
memory controller logs a corrected error with an indication that the mirror is still good. If rereading the primary
copy gives an error again, then the error is more serious. This is still logged as a corrected error, but includes an
indication that the mirror is failing.

For performance reasons the memory controller might interleave the primary copies across channels so that read
operations on the mirrored area take advantage of aggregate bandwidth of all channels. For example, Figure 1 shows
a mirror split across two channels and a trivial alternating interleave scheme:

LINUX KERNEL PERFORMANCE -

Processor view of memory

A

“ Controller

Figure 1: Mirror channel interleave

GUIDE TO ENABLING PARTIAL RANGE MEMORY MIRRORING

The remainder of this document is a step-by-step guide to setting up a Linux system using mirrored memory.

BIOS SETTINGS

The steps and menu items used to enable memory mirroring in the following example might differ depending on
your system hardware; refer to your own system'’s BIOS setup for specific instructions. All of the following work was
done on an Intel® software development platform code named Thunder Ridge with four Intel® Xeon® E7-8890
processors. Memory mirroring is disabled by default, so first we need to enable partial memory mirroring through the
BIOS setup menu.

1. Select the EDKII Menu option from the top level menu:

LINUX KERNEL PERFORMANCE

M IV M F L al bl e # WP WS * Wl W T W W A e AW W AW e A e T L L™ I v

Copyright (c) 2086-2815, Intel Corporation

This selection will

SFDKII Menu take you to the
EDKII_MENU

> Boot Manager Menu
= Boot Maintenance Manager

Continue
Reset

2. In the EDKIl menu, choose Advanced:

Devices List Press <Enter= to
Platform Driver Override selection select the Advanced
Boot Options System Setup options.

Securité

System Information

Main

Secure Boot Configuration
TCG Configuration

iSCSI Configuration

ALl Cpu Information

3. Select Memory RAS Configuration:

Processor Configuration Displays and provides
Advanced Power Management Configuration option to change the
QPI Configuration Memory Ras Settings
Memory Configuration

Memory RAS Configuration
II0 Configuration

PCH Configuration
Miscellaneous Configuration
USB Configuration

Network Configuration

V vV VWV VYV Y YV

4. Scroll all the way to the bottom of the Memory RAS Configuration menu to the Memory Mirroring option. Change
this option from <Disable>to Partial CH Mirroring (OS Request).

LINUX KERNEL PERFORMANCE

Socket Interleave Below <Disable> Select Memory
4GB Mirroring mode.
Channel Interleaving <Auto>

Rank Interleaving <Autos

Demand Scrub
Device Tagging Full CH Mirroring

GEI NI Tl IdYd | Partial CH Mirroring(Bios Setting)
Memory Power Man[R:ETg=® 1o e, WL a o TR 0T (0GRS)
Memory Rank Mas k| ettt

A7 Mode <Disable>
DDDC support <Disabled>
Apply Memory RAS policy <Disable>
globally

Memory Mirroring

5. Press the F10 key to save settings and return to the top level menu to reset the system. Then boot to Linux.

THE EFIBOOTMGR(8) TOOL

This tool communicates with the BIOS using UEFI persistent variables? to pass requests to the BIOS that take effect

on the next reboot, and also allows the BIOS to pass information back to Linux. Partial memory mirroring is a new

feature, so the version of this tool on your system might not have support for mirroring.

You can check to see if your version supports memory mirroring by running the tool with no arguments. If it it reports

MirroredPercentageAbove4G and MirrorMemoryBelow4GB values, memory mirroring is supported.

If it does not, you can build the latest version using the following steps:

$ git clone git://github.com/rhinstaller/efivar
$ cd efivar

$ make

$ su

Password:

make install

exit

$ cd ..

$ git clone git://github.com/rhinstaller/efibootmgr
$ cd efibootmgr

$ make

$ su

Password:

make install

efibootmgr

BootCurrent: 0000

Timeout: 10 seconds

LINUX KERNEL PERFORMANCE

Boot@002 Boot Device List

Boot@oO3* UEFI Kingston DataTraveler 2.0 ©00AEB91BDO7A980450F0108
Bootoeo4* UEFI TEAC DV-W28S-W

Boot0@005* UEFI SAS ©31A92CD1AD5A961-SAS-EXTERNAL-EXPANDED
MirroredPercentageAbove4G: 0.00

MirrorMemoryBelow4GB: false

The last two lines of output here are a message from the BIOS contained in a UEFI boot variable that tells us that the
platform supports memory mirroring, memory mirroring is enabled in the BIOS, but that no memory is currently
being mirrored.

We use the efibootmgr tool to update the UEFI boot variable with a request that the BIOS will fulfill during the next
boot:

efibootmgr -m 1 -M 11.25

This produces the same output as shown above, plus two extra lines:

RequestMirroredPercentageAbove4G: 11.25
RequestMirrorMemoryBelow4GB: true

The -m 1 flag specifies whether you want the memory below 4 GB to be mirrored, which you almost always will.
The -M flag specifies the percentage of memory above 4 GB that should be mirrored. You can specify this as a
floating point value with up to two decimal places. The BIOS applies this percentage separately to each ACPI
proximity domain to ensure that some mirrored memory will be available on each NUMA node.

KERNEL BOOT PARAMETER

Linux kernel support for mirrored memory is in version 4.6 and higher, but we need to tell Linux to reserve mirrored
memory for use by the kernel only. Assuming your Linux distribution uses the grub2 bootloader, this is done by
adding the kernelcore=mirror parameter to your grub.cfgfile. The exact location of this file varies between
distributions. A reboot is required after adding this parameter so the changes will take effect.

RUNNING A SYSTEM WITH MIRRORED MEMORY

First we need to run a couple of checks to confirm that our setup worked.

We can use the following to check the console log and confirm that the BIOS mirrored the memory we asked for, and
that the Linux kernel found and used the mirrored memory:

dmesqg | grep mirrored
[©.000000] efi: Memory: 60416M/464128M mirrored memory

LINUX KERNEL PERFORMANCE -

-

available memory by two gigabytes because we need a primary and secondary copy of all mirrored data.

So if we adjust the total memory to what it would have been without any mirroring we have 60418/(60418+464128),
which is 11.5%. Much closer to our request. The remaining difference is because we mirror all of the memory below
4 GB, and because there is some rounding when setting up mirrored sections of memory.

If we rerun the efibootmgr command we'll see the values computed by the BIOS:

MirroredPercentageAbove4G: 11.22
MirrorMemoryBelow4GB: true
To check the amount of mirrored memory available, we can look in /proc.
grep -A 1 ", zone" zoneinfo
Node ©, zone DMA
pages free 3068
Node 0, zone DMA32
pages free 414446
Node 0, zone Normal
pages free ©
Node ©, zone Movable
pages free 32450211
Node 1, zone Normal
pages free 4454637
Node 1, zone Movable
pages free 23573294
Node 2, zone Normal
pages free 4441648
Node 2, zone Movable
pages free 23535425
Node 3, zone Normal
pages free 3890024
Node 3, zone Movable
pages free 23579217

At this point an internal detail of the kernelcore=mirror kernel parameter becomes evident. The simple

LINUX KERNEL PERFORMANCE -

In the kernel's view, we have two kinds of memory: fixed and movable. The kernel will only ever allocate its own data
structures in fixed memory because the kernel allocators have no way to reclaim an allocation if the allocated
memory is about to be removed. Movable memory is used for user processes since we can use page swapping
mechanisms to trade out pages from applications.

The kernelcore=mirror option simply tells the kernel that all the mirrored ranges of memory are fixed, and all
the nonmirrored ranges are movable. Thus all kernel allocations will be made from fixed (mirrored) memory.

It's important to note that because system memory is divided into these two distinct resource pools and there is no
way to change the distribution of mirrored memory and nonmirrored memory at runtime, system performance can
suffer if the system runs out of either type of memory. If the kernel runs out of mirrored memory, the system can
experience operations failures, and if application memory runs out, paging operations can begin to degrade system
performance as well.

TUNING

That makes the obvious question when using mirrored memory be, *How much should | configure?” The answer is
the same as it is for every other performance tuning question in computer science: “It depends.”

The exact amount of mirrored memory required depends on the server’s workload. As an example, workloads that
allocate almost all memory to applications, like memory databases or high performance computing, will run perfectly
well with very low percentages of mirrored memory. Conversely, workloads that use large amounts of OS memory to
perform basic kernel operations, like you might find on a file server, can suffer from operations failures and poor
performance if you do not allocate enough mirrored memory for the kernel to operate normally.

There is a fixed lower bound of around 2% mirrored memory, below which the kernel cannot work at all. (The kernel
needs 1.56% mirrored memory just for structures to manage the rest of memory.) The highest possible percentage
of mirrored memory is 50%. Remember that the percentage is applied to the total amount of memory before
mirroring, so 50% means that we split all memory into the primary and secondary copies of mirrored memory. If you
find that your workload needs close to 50% mirrored memory, then you should probably just the Full CH mirroring
mode in the BIOS setup instead of partial mirroring.

TESTING

We can use the ACPI EINJ mechanism to inject errors into mirrored memory and confirm that they are handled as
expected. The full details of this testing is beyond the scope of this document, but the overall flow looks something
like this:

e Enable error injection in BIOS settings. (This is under the EDKIl > Advanced > System Event Log > WHEA Settings
menu.)

o Write a test driver that allocates some mirrored kernel memory and publishes the physical address.

» Inject an uncorrected memory error at the physical address using the Linux error injection interface in /sys/kernel
/debug/apei/einj. Refer to Documentation/acpi/apei/einj.txtin the Linux kernel source for an explanation of this
interface.

LINUX KERNEL PERFORMANCE

'JI mnirai _y vl ODTLvuliual y \.UP)’ mni 'JI I)’QI_Q\. rcinivl y. 1 L1 Tiivl 12111 uic 'JI mniai y _\J'Jy, LTI LT THEVULE vvawe IEGCI aliu uc
flow will proceed as described in the Mechanics of mirroring section. The error gets corrected in the primary copy
using the data from the secondary, since EINJ only injects transient errors.

However if the error is in the secondary copy, no error gets triggered because the read will get good data from the
primary copy of the mirror. In this case the driver should write new data to the address to clear the error and retry
with another address.

CONCLUSION

Partial memory mirroring for kernel allocations can provide increased reliability and uptime for single servers or
single point-of-failure systems running Linux kernel version 4.6+. By mirroring only the memory that the kernel
needs, partial memory mirroring is also more cost effective for some workloads than mirroring all of a system'’s
memory. You can use the kernel parameters, configuration options, and tools to enable, test, and fine-tune partial
memory mirroring to best fit your requirements.

FOOTNOTES

1. https://software.intel.com/en-us/articles/address-range-partial-memory-mirroring

